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Input Skills:

1. Vocabulary: magnetization, magnetic intensity, surface current
density, transport current, magnetic scalar potential, ferromag-
netic material, pole densities (MISN-0-510).

2. Solve electric circuit problems including series and parallel resis-
tance combinations (MISN-0-119).

3. Use Ampere’s law with systems of sufficient symmetry to deter-
mine the magnetic intensity (MISN-0-510).

Output Skills (Knowledge):

K1. Vocabulary: magnetic flux, the boundary conditions on the mag-
netic induction and the magnetic intensity, magnetic circuit,
magnetomotive force, reluctance, demagnetizing factor, magnetic
shielding factor.

K2. Derive Laplace’s equation for the magnetic scalar potential for
linear magnetic material starting from the basic field equations
for magnetostatics when current density is zero.

Output Skills (Problem Solving):

S1. Use Ampere’s law, boundary value conditions and the hysteresis
curves of any permanent magnet present to determine the mag-
netic induction in a given magnetic circuit.

S2. Given a magnetic material of spherical or cylindrical symmetry,
either in an external field or with a permanent magnetization and
with no transport current present, determine the magnetic fields
inside and outside the material.

External Resources (Required):

1. J. Reitz, F.Milford and R.Christy, Foundations of Electromagnetic

Theory, 4th Edition, Addison-Wesley (1993).
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MAGNETIC MATERIALS AND

BOUNDARY VALUE PROBLEMS

by

C. P. Frahm

1. Introduction

The purpose of this Unit is to solve problems involving materials
with different magnetic characteristics. To do this, the behavior of the
field vectors ~B and ~H in passing an interface between two media must
be known. Boundary conditions are derived for ~B and ~H, analogous to
the boundary conditions on the field vectors ~E and ~Din electrostatics. It
will be seen that the normal component of ~B across an interface must be
continuous while the tangential component of ~H across the interface is
discontinuous. The discontinuity in ~H is proportional to the true surface
current density.

The problems analyzed in this Unit include:

1. Toroidal current winding units a ferromagnetic core with and without
an air gap

2. Other magnetic circuits with a well-confined flux and simple geometry

3. Magnetic fields for magnetic materials with no transport currents and
with the flux not well-confined. Examples include spheres and cylin-
ders in an external field with no permanent magnetization ~M as well as
permanently magnetized spheres and cylinders with no external field.
These examples, will allow us to introduce the concepts of magnetic
shielding and demagnetization factor, respectively.

In order to deal with magnetic circuits, the magnetomotive force
and reluctance are introduced. In the more general case of flux which is
not well-confined, the magnetic scalar potential which satisfies Laplace’s
equation with no transport currents present is utilized.

2. Procedures

1. Review the concept of magnetic flux Φ in Sec. 8-9 of the text.

2. Read Secs. 9-7 to 9-11 of the text. Read the Supplementary Notes.
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Figure 1. .

3. Write down or underline in the text the definitions and concepts asked
for in Output Skill K1.

4. Solve these problems (note that for Problem 9-18, Figure 9-21 in the
text should be replaced by our Fig. 1):

Problem Type
9-9, 9-10 Magnetic induction for toroidal current

windings with a material core
9-18,9-19 Simple magnetic circuits
9-16 Magnetic shielding factor of a cylindrical shell

3. Supplementary Notes

1. Magnetic Shielding: Spherical Shell of Permeable Material in
a Uniform Field

In Fig. 2, since there are no conduction currents present,

~∇× ~H = 0⇒ ~H = −~∇V ∗

z-axis

permeability, m

ab

B
`

0 B
`

0

2

3

1

Figure 2. .
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Since, ~B = µ ~H, ~∇ · ~B = 0 becomes ~∇ · ~H = 0 in the various regions.
Hence,

∇2V ∗ = 0

everywhere. Thus for r > b,

V ∗
1 = −B0r

cos θ

µ0

+

∞
∑

`=0

α`

r`+1
P`(cos θ)

in order that ~H → ~B0/µ0 as r →∞. For the inner regions,

(a < r < b) V ∗
2 =

∞
∑

`=0

(

β`r
` + γ`

1

r`+1

)

P`(cos θ)

(r < a) V ∗
3 =

∞
∑

`=0

δ`r
`P`(cos θ)

since V ∗ must be finite at r = 0. The boundary conditions at r = a
and r = b are that Hθ and Br be continuous. So,

∂V ∗
1

∂θ

∣

∣

∣

∣

r=b

=
∂V ∗

2

∂θ

∣

∣

∣

∣

r=b

,
∂V ∗

2

∂θ

∣

∣

∣

∣

r=a

=
∂V ∗

3

∂θ

∣

∣

∣

∣

r=a

µ0

∂V ∗
1

∂r

∣

∣

∣

∣

r=b

= µ
∂V ∗

2

∂r

∣

∣

∣

∣

r=b

, µ
∂V ∗

2

∂r

∣

∣

∣

∣

r=a

= µ0

∂V ∗
3

∂r

∣

∣

∣

∣

r=a

These four conditions which hold for all angles θ are sufficient to deter-
mine the unknown constants. All coefficients with ` = 1 vanish. The
` = 1 coefficients satisfy the four simultaneous equations,

α1 − b
3β1 − γ1 = b3

B0

µ0

2α1

µ

µ0

b3β1 − 2
µ

µ0

γ1 = −b
3B0

µ0

a3β1 + γ1 − a
3δ1 = 0

µ

µ0

a3β1 − 2
µ

µ0

γ1 − a
3δ1 = 0

The solutions for α1 and δ1 are,

α1 =

[

(2µ+ µ0)(µ− µ0)

(2µ+ µ0)(µ+ 2µ0)− 2a3/b3(µ− µ0)2

]

(b3 − a3)(B0/µ0)
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and

δ1 = −

[

9µµ0

(2µ+ µ0)(µ+ 2µ0)− 2a3/b3(µ− µ0)2

]

(B0/µ0)

The potential outside the spherical shell corresponds to a uniform field
~B0 plus a dipole field with dipole moment α1 oriented parallel to ~B0.
Inside the cavity, there is a uniform magnetic force field parallel to ~B0

and equal in magnitude to −δ1. For µ À µ0 the dipole moment α1

and the inner field −δ1 become,

α1 → b3(B0/µ0)

−δ1 →
9µ0

2µ

(

1−
a3

b3

) (B0/µ0)

Thus, the inner field is proportional to (µ/µ0)
−1. Consequently, a

shield made of high-permeability material with µ/µ0 ∼ 103 to 106

causes a great reduction in the field inside, even for a relatively thin
shell. Thus, the magnetic induction in the cavity is given by,

B3 = µ0H3 = −µ0 − δ1

The magnetic shielding factor,

hm ≡
B0

B3

= −
B0

µ0δ1
≈
2

9
km

(

1−
a3

b3

)

if km À 1 (see Fig. 3.).

2. Correct Derivation of eqs. (9-68) and (9-69):

Equation (9-67) of the text is not correct as the text states. The text
then pulls (9-68) out of the air. These are indeed the correct equations,
but they can be derived from basic principles rather than being plucked
from thin air. The principles are two:

(1) Ampere’s circuital law

Thus,
∮

Ht = H1t · `+H2t(gap) · d+H2t(material) · (`− d) = NI

in an obvious notation. But,

H1t =
NI

`
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Figure 3. .

so that,

H2t(gap) ·
d

`
+H2t(material) ·

(

1−
d

`

)

= 0 (1)

(2) The boundary condition on the magnetic induction at the interface
between the material and the air in the gap. Thus,

Bt(gap) = Bt(material) (2)

But,
Bt(gap) = µ0Ht(gap) (3)

and
Bt(material) = µt(Ht(material) +Mt) (4)

Combining eqs. (2), (3), and (4) gives

Ht(gap) = Ht(material +Mt) (5)

Combining eqs. (1) and (5) gives

H2t(material) = −Mt

d

`

and

H2t(gap) =Mt

(

1−
d

`

)
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