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Input Skills:

1. Vocabulary: conduction current, current density, ampere (MISN-
0-530).

2. State Ohm’s law in terms of current density and electric field
(MISN-0-530).

Output Skills (Knowledge):

K1. Vocabulary: magnetic force, magnetic induction, Lorentz force,
magnetic vector potential, magnetic moment of a circuit.

K2. State the expressions for the force and the torque on an infinitessi-
mal element of current-carrying conductor, on a complete circuit,
and on a magnetic dipole moment due to a magnetic induction.

K3. State the differential equations satisfied by the magnetic induction
and the current density in the case of magnetostatics.

K4. State the expression for the magnetic vector potential and the
magnetic induction due to a magnetic dipole moment.

Output Skills (Rule Application):

R1. Given a simple current distribution, determine the magnetic vector
potential or use the Biot and Savart law to determine the magnetic
induction.

Output Skills (Problem Solving):

S1. Given a current distribution of sufficiently high symmetry, use
Ampere’s law to determine the magnetic induction.

External Resources (Required):

1. J. Reitz, F.Milford and R.Christy, Foundations of Electromagnetic

Theory, 4th Edition, Addison-Wesley (1993).
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1. Procedures

1. Read Chapter 8, Sec. 8-1 to 8-7.

2. Write down or underline in the text each of the equations called for in
Output Skills K1-K4. Be sure that you can define or explain each of
the symbols appearing in the various equations (except for standard
mathematical notation like integral signs). The definition of the mag-

netic Lorentz force ~Fm is given to be: that part of the force exerted on
a moving charge, which is neither electrostatic nor mechanical. The
mathematical definition of the Lorentz force is given by equation 8-5.

3. Write down, or underline in the text, the equations for force and torque
on a circuit with magnetic moment ~m due to a constant magnetic
induction. Write down an expression for the vector potential ~A and
magnetic induction ~B due to a magnetic dipole ~m.

4. Re-read Sec. 8-4 very carefully for applications of the Biot- Savart Law
to simple geometrics. These are proto-type calculations. Especially
important is the approximation procedure involving the Taylor’s series
expansions through which equations 8-44 and 8-49 are obtained.

5. Re-read Sec. 8-5 very carefully for applications of Ampere’s Law. You
may wish to review earlier course work in this area.

6. Read the Supplementary Notes for additional model problems.
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7. Solve these problems:

Problem Number Type
8-3 Lorentz force and equation of motion
8-7, 8-8, 8-9, 8-11 Magnetic induction due to simple current

distribution - Biot-Savart Law
8-15, 8-16 Magnetic induction due to simple current

distribution - Ampere’s Law
8-20 Vector potential due to simple current

distribution

Hint: For 8-20 first calculate the vector potential due to a sing1e
current-carrying wire of finite length. Add to that result, the expres-
sion for the current-carrying wire of the same length but oppositely-
directed current. Then let the length of the two wires go to infinity
together.

2. Supplementary Notes

Problem 8-1: Given the parameters shown in Fig. 1, find the motion of
the particle.

Solution: Relevant theory is based on the Lorentz Force Law,

~F = q~V × ~B

and Newton’s Second Law,

F = m
d~V

dt
.

z

x

m,q
yO

V(o)

B
`

= B ³o o

V
`

= V ,
`

where(t)

V
`

= V Ì + V Î,(o) xo zo

V = V ." xo

Figure 1. .
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Thus, we get three equations from equating the right hand sides of the
above two equations and carrying out the indicated cross products.

m
dVx

dt
= +qVyB0 (1)

m
dVy

dt
= −qVxB0 (2)

m
dVz

dt
= 0 (3)

Differentiating the first two of these three relations again gives

m
d2Vx

dt2
= qB0

dVy

dt
= −q2B2

0

Vx

m
(4)

and

m
d2Vy

dt2
= −qB0

dVx

dt
= −q2B2

0

Vy

m
(5)

These last two equations can be written as,

V̈x + ω2Vx = 0 (6)

V̈y + ω2Vy = 0 (7)

where ω = |qB0/m|. Solutions of these last two equations are

Vx = Vx(t) = A sinωt + B cosωt (8)

Vy = Vy(t) = A′ sinωt + B′ cosωt (9)

So,
Vx(0) = B = Vx0 and Vy(0) = B′ = 0 (10)

Thus,
Vx(t) = A sinωt + Vx0 cosωt (11)

Vy(t) = A′ sinωt (12)

From eq. (2),

−mA′ cosωt = qB0[A sinωt + Vx0 cosωt]

so that,
A′ = −Vx0 and A = 0

Thus,
Vx(t) = Vx0 cosωt (13)
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Figure 2. .

Vy(t) = −Vx0 sinωt (14)

Vz(t) = Vz0 (15)

Eqs. (13), (14), and (15) can be solved to get

x(t) =
Vx0

ω
sinωt

y(t) =
Vx0

ω
cosωt

z(t) = Vz0t

These are the equations for a helix, the cross section of which is a circle
(see Fig. 2.). The radius R is given by:

R =
√

x(t)2 + y(t)2 =
Vx0

ω
=

∣

∣

∣

∣

mVx0

qB

∣

∣

∣

∣

.

Problem 8-13: Given the situation in Fig. 3.

Also,
Br = Br(r, z), Bz = Bz(r, z), Bθ = 0

Br(r, 0) = 0,
∂Bz

∂r
< 0

And,
~∇× ~B = 0 in the gap

Solution:
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DBr

DBr

z-axis

z = 0
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N

Figure 3. .

a. Now,

~∇× ~B = âθ

(

∂Br

∂z
−

∂Bz

∂r

)

= 0

So,
∂Br

∂z
=

∂Bz

∂r
< 0

Then,

∆Br =
∂Br

∂z
∆z

If ∆z > 0 ⇒ ∆Br < 0 while ∆z < 0 ⇒ Br > 0. Since Br = 0 on the
median plane, the lines tend to bow out as pictured.

b. Locally,
~B = Brâr + Bzâz

and
~V = Vrâr + Vθâθ + Vzâz

where ~V is the velocity of a charge drifting from the median plane. If
the charge q is positive, one has counterclockwise motion of the charge
so Vθ < 0. If the charge is negative, one has clockwise motion so
Vθ > 0. So, qVθ < 0 for both cases. But,

~F = q~V × ~B
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so that
Fz = −qVθBr < 0

because Br < 0 above the median plane (from part a). Since, ∆z <
0 ⇒ is a restoring force in the z-direction. The same analysis goes
through for drift below the median plane where ∆z < 0 since Br > 0
in that region.
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