
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-507

DIELECTRICS -

BOUNDARY VALUE PROBLEMS

Electricity
and

Magnetism

1

DIELECTRICS - BOUNDARY VALUE PROBLEMS

by

R.D.Young

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3. Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2



ID Sheet: MISN-0-507

Title: Dielectrics - Boundary Value Problems

Author: R.D.Young, Dept. of Physics, Ill. State Univ.

Version: 2/1/2000 Evaluation: Stage B0

Length: 2 hr; 13 pages

Input Skills:

1. Vocabulary: dielectric, dielectric constant, permittivity, electric
susceptibility, linear isotropic dielectric, polarization, electric dis-
placement vector, external charge, polarization charge (MISN-0-
506); Poisson’s equation (MISN-0-505).

2. Express the solution to Laplace’s equation in terms of zonal har-
monics and cylindrical harmonics (MISN-0-505).

3. State Gauss’s law for the electric displacement (MISN-0-506).

Output Skills (Knowledge):

K1. State the boundary conditions for the electric field and the dis-
placement vector at an interface between two dielectric media.

K2. State the forms of Poisson’s and Laplace’s equations for fields in
the presence of dielectric material.

Output Skills (Problem Solving):

S1. Given a simple geometrical arrangement of two dielectric media or
a dielectric medium in conjunction with conducting surfaces, use
the boundary value conditions to determine the potential, electric
field, displacement vector and charge densities in the media.

External Resources (Required):

1. J. Reitz, F.Milford and R.Christy, Foundations of Electromagnetic

Theory, 4th Edition, Addison-Wesley (1993).
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DIELECTRICS - BOUNDARY VALUE PROBLEMS

by

R.D.Young

1. Introduction

In general, two or more dielectric media are present in a given situ-
ation. In fact, the vacuum can always be considered as a dielectric with
permittivity ε0. Or there may be at least one dielectric medium and one
conducting medium in a problem. In these more complicated problems,
the behavior of the field vectors ~E and ~D across the interface between two
media is required for a solution. The boundary conditions across such an
interface are derived in terms of the tangential component of the elec-
tric field ~E and the normal component of the displacement ~D. Poisson’s
equation in the presence of a dielectric medium is derived and specialized
to Laplace’s equation in the absence of any free charge.

Thus, an electrostatic problem involving linear, isotropic, and homo-
geneous dielectrics reduces to finding solutions of Laplace’s equation in
each medium, and joining the solutions in the various media by means of
the boundary conditions alluded to above.

2. Procedures

1. Read Secs. 4-7 to 4-8 of the text.

2. Write down or mark in the text the condition on the tangential compo-
nent of the electric field ~E (eq. 4-42b) and the normal component of the

displacement vector ~D (eq. 4-41b) at an interface between two media.
Also, write down a sentence or two explaining each of the equations
(4-41b) and (4-42b). Be prepared to write down both the equations
and the explanatory sentences on the Unit Test.

3. Write down or mark in the text Poisson’s and Laplace’s equations (4-48
and 4-49, respectively) in the presence of dielectric material.

4. Read Example 4-2, “Dielectric sphere in a uniform electric field,” very
carefully. This is a prototype example of solving Laplace’s equation
when a dielectric medium is present using boundary conditions on ~E

and ~D.
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5. Read the Supplementary Notes for other examples of solving elec-
trostatic problems involving linear, isotropic, and homogeneous di-
electrics. The problems solved in the Notes are numbers 4-7, 4-16,
and 4-17 of the text.

6. Solve the following problems:

4-8, 4-10, 4-15, 4-17

3. Supplementary Notes

1. Problem 4-7

Given:

Two dielectric media with dielectric constants K1 and K2. Media
separated by plane interface. No free charge on interface.

The angles θ1 and θ2 are the angles that the displacement vector makes
with a normal to the interface in medium 1 and 2, respectively (see
Fig. 1).

Find - Relationship between θ1, θ2 and K1, K2.

Since there is no free charge,

D1n = D2n (1)

E2t = E1t (2)

Medium 1 Medium 2

Interface

D
`

1

D
`

2

q1

q2

K1 K2

Figure 1. .
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where the subscripts n and t mean normal and tangential, respectively.

Thus,
D1 cos θ1 = D2 cos θ2

E1 sin θ1 = E2 sin θ2

K1

K2

=
tan θ1
tan θ2
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V1

d

V2

y

x

DV = V - V2 1

let K = 1 in gap (vacuum)origin

K

Figure 2. .

2. Problem 4-16

Given:

Two parallel conducting plates - separated by d and maintained at
potential difference ∆V .

Slab (dielectric constant K) and uniform thickness d between plates.
Slab does not completely fill volume between plates.

Find -

a) Electric field in dielectric

b) Electric field in vacuum

c) Charge density σ on plate in contact with dielectric

d) Charge density σ on plate in contact with vacuum

e) Bound charge density σp on surface of dielectric

Solution -

In dielectric,
V = ax+ b

In vacuum,
V = cx+ `

But,
V (x = 0) = V1 and V (x = d) = V2

Then,
V (x = 0) = V1 = b = `
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Also,
V (x = d) = V2 = ad+ V1 = cd+ V1

Thus,

a =
V2 − V1

d
=

∆V

d

Hence,

V (x) =
∆V

d
x+ V1

In vacuum and dielectric. Now,

E(x) = −
∂V

∂x
= −

∆V

d

in vacuum and dielectric. Inside the conducting plates, D = E = 0.
So, the boundary condition on the displacement vector (which has only
a normal component) is

D = σ

Thus,

σ = D = Kε0E = −Kε0
∆V

d

on plate in contact with dielectric.

Thus,

σ = D = ε0E = −ε0
∆V

d

on plate in contact with vacuum.

From σp = ~P · n̂,

σp = P = D − ε0E = Kε0E − ε0E = (K − 1)ε0E

So,

σp = −(K − 1)ε0
∆V

d

3. Problem 4-17

Given:

Conducting sphere (radius R, free charge Q). Sphere floats ha1f-
submerged in a liquid dielectric of permittivity E1. Region above
sphere is gas of permittivity E2.

Find - Electric field in dielectrics.

9

MISN-0-507 6

gaseous dielectric

liquid dielectric

E1

E2

z

y

x

QR

Figure 3. .

Solution -

Select a coordinate system with origin at the center of the sphere, the
z-axis perpendicular to the surface of the liquid, and the x-y plane
in the surface of the liquid. Then, the problem should be symmetric
about the z-axis. Thus, the potential in medium 1 and 2 should be
expanded in terms of zonal harmonics. So,

Medium 1

V1 = A1 + C1r
−1 +A2r cos θ + C2r

−2 cos θ+

1

2
A3r

2(3 cos2 θ − 1) +
1

2
C3r

−3(3 cos2 θ − 1) + . . .

where
R < r <∞,

π

2
≤ θ ≤ π

Medium 2

V2 = A′
1
+ C ′

1
r−1 +A′

2
r cos θ + C ′

2
r−2 cos θ+

1

2
A′

3
r2(3 cos2 θ − 1) +

1

2
C ′

3
r−3(3 cos2 θ − 1) + . . .

where
R < r <∞,

π

2
≤ θ ≤ π

Let r →∞. Then, V1 and V2 must behave like a point charge potential.
So,

A2 = A3 = . . . = A′
2
= A′

3
= . . . = 0

Likewise, as r → R, V1 and V2 must become constant independent of
θ. So,

C2 = C3 = . . . = C ′
2
= C ′

3
= . . . = 0
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Hence,
V1 = A1 + C1r

−1 and V2 = A′
2
+ C ′

1
r−1

Thus, ~E is a radial field. Since ~E is independent of θ and continuous
at the interface,

~E1 = ~E2 = E
~r

r

The displacement vector D is parallel to E so D is radial. Apply
Gauss’ Law to an (imaginary) spherical surface of radius r, concentric
with the conducting sphere. Then,

∮
~D · n̂dS = Q = D1

A

2
+D2

A

2

where A = 4πr2. So,

Q = ε1E · 2πr
2 + ε2E · 2πr

2

E =
Q

2π(ε1 + ε2)r2

and
~E =

Q

2π(ε1 + ε2)r3
~r

You can calculate the charge densities.
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