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K3. State the superposition theorem and the uniqueness theorem rele-
vant to solutions of Laplace’s equation. Explain the usefulness of
these two theorems.
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S1. Given a particular arrangement of symmetric equipotential sur-
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region of space.
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SOLUTIONS TO LAPLACE’S EQUATION

by

R.D.Young

2. Introduction

The solution to an electrostatic problem is complete when the charge
distribution is everywhere specified. For then, the potential and electric
fields are given directly as integrals over this charge distribution:

U(~r) =
1

4πε0

∫

dq′

|~r − ~r′|

or

~E(~r) =
1

4πε0

∫

(~r − ~r′)

|~r − ~r′|3
dq′

For complicated charge distributions, these integrals can be very dif-
ficult, if not impossible, to do analytically. Approximate numerical cal-
culations can be carried out by hand or by digital computer. However,
in cases where some of the charge distribution is not known, this is even
impossible. One example would be any problem where conductors are
involved. Although the potential or total charge on the conductors may
be known, the exact distribution of charge may not be known.

In order to handle such problems, alternative methods for calculating
the potential and / or electrical field are required. This unit develops
one of these methods. The method is essentially a means to obtain the
potential U(~r) in charge-free space. The electrostatic field can then be
calculated as well as the charge distribution on all conductors.

The method uses the fundamental differential equation (as opposed
to integral equation) for the potential U(~r). In charge-free space, this
equation reads:

∇2U(~r) = ∇2U(x, y, z) = 0 .

The operator ∇2 is called the “Laplacian.” The problems in this section
will have certain symmetries which can he exploited in order to simplify
the computations. The two cases treated in this unit involve the sym-
metry of the geometries with respect to reflection through the origin and
through the z-axis. Certain types of coordinate systems are especially
appropriate when these symmetries are present. The spherical coordinate
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system is generally used when the geometry is symmetric with respect to
reflection through the origin (sometimes the phrase “symmetric about the
origin” is used). The cylindrical coordinate system is generally used when
the geometry is symmetric with respect to reflection through the z-axis
(“symmetric about the z-axis”). Thus, the “Laplacian” will need to be
expressed in each of these coordinate systems. The method of solution
results in the potential being expressed as an infinite series of functions.
The coefficients in the series are then chosen so as to satisfy all boundary
conditions in the problem.

2. Procedures

1. Read Ch. 3, “Solution of Electrostatic Problems,” Secs. 3 - 1 to 3 -
6 of the text. Write down Poisson’s equation (3-5b) and Laplace’s
equation (3-9). Write down the definitions of all symbols involved
in these equations. Write down the derivation of Poisson’s equation
beginning with the differential form of Gauss’ Law (3-3).

2. Read the Supplementary Notes, Sec. I, for a discussion of spherical and
cylindrical coordinates. Write down the definitions of the spherical
and cylindrical coordinates, including the geometric diagrams in the
Supplementary Notes. Write down the algebraic equations given in
eqs. 3 and 4 of the Supplementary Notes for the relationship of both
sets of coordinates to rectangular coordinates.

Note: On the Unit test you will be given an expression for the Lapla-
cian. You will then have to state whether or not the expression is a
valid form of Laplacian and which coordinate system is used to write
down the Laplacian.

3. Write down Theorem I (Superposition Theorem) and Theorem II
(Uniqueness Theorem). See the Supplementary Notes, Sec. II, for a dis-
cussion of the importance of these two Theorems in solving Laplace’s
equation. You may be asked for such a discussion on the unit test.

4. Write down the derivation of the two ordinary differential equations
(eq. 3-16 and 3-17) for the electrostatic potential in spherical coordi-
nates in the case where the potential is independent of the azimuthal
angle φ. You are to begin with eq. 3-13 and assume that

U(~r) = U(r, θ) = Z(r)P (θ)

In your derivation of eq. 13-17, you can leave the separation constant
as k since k = n(n + 1) where n is an integer can be established only

6



MISN-0-505 3

after solving eq. 3-16.

5. Write down the derivation of the two ordinary differential equations
(eq. 3-25) for the electrostatic potential in cylindrical coordinates in the
case where the potential is independent of the z-coordinate. (Caution:
This r and θ are different from those appearing in Procedure 4). The
two ordinary differential equations come directly from eq. 3-25. That
is, if U(r, θ) = Y (r)S(θ), then the ordinary differential equation are:

r
d

dr

(

r
dY

dr

)

− kY = 0 (1)

and
d2S

dθ2
+ kS = 0 (2)

6. Read the Supplementary Notes, Sec. III. Write down equations (6),
(7), (8), and (9) of the Supplementary Notes and be prepared to write
them down from memory when asked.

7. Read very carefully the solution of the potential of an uncharged con-
ducting sphere placed in an initially uniform electric field ~E0 as given
in Sec. 3-5 of the text. This is a prototype solution which can be used
as a model for other problems. You will have to refer to this solution
when carrying out Procedure No. 8.

8. Solve the following problems:

Problems 3-1, 3-2, 3-8, 3-11, 3-12

Supplementary Notes

I. Spherical coordinates (r, θ, φ) as in Fig. 1.

Any point P can be located by the radius vector ~r. The radius vector
~r can be expressed in terms of rectangular coordinates as

~r = x~i+ y~j + z~k

Alternatively, the radius vector ~r can be expressed in terms of spherical
coordinates (r, θ, φ) which are defined as follows:

i) the variable r is the magnitude of ~r, that is, the distance from the
origin to P .
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P (x,y,z)

(r, , )q f

q r

r
`

z

y

90°
f

x

Figure 1. Spherical coordinates (r,θ,φ).

ii) the polar angle θ is the angle between the z-axis and ~r.

iii) the azimuthal angle φ is the angle in the x− y plane between the
x-axis and the projection of ~r onto the x− y plane.

It is relatively easy to derive the following algebraic relations:

x = r sin θcosφ (3)

y = r sin θ sinφ

z = r cos θ

Cylindrical coordinates (r, θ, z) as in Fig. 2.

In this case, the radius vector ~r can be expressed in terms of cylindrical
coordinates (r, θ, z) which can be defined as follows

i) the variable r is the magnitude of the projection of ~r onto the x−y
plane.

ii) the azimuthal angle θ is the angle in the x− y plane between the
x-axis and the projection of ~r onto the x− y plane.

iii) the variable z is the same as in the rectangular coordinate system
with (x, y, z).

It is relatively easy to derive the following algebraic relations:

x = r cos θ (4)

y = r sin θ

z = z
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P (x,y,z)

(r, ,z)q

r

r
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z

z

y

90°q

x

Figure 2. Cylindrical coordinates (r,θ,z).

II. Superposition and Uniqueness Theorems for Laplace’s Equation

Theorem I is called the Superposition Theorem. It’s importance rests
with the fact that it is sometimes possible to obtain a set of functions
{Un(~r)}

∞

n=1 which are all solutions to Laplace’s equation

∇2Un(~r) = 0

These solutions can be found by the separation-of-variables method,
say, in a particular coordinate system. Then, if Cn are a set of arbitrary
constants, we can write

U(~r) =

∞
∑

n=1

CnUn(~r) = C1U1(~r) + C2U2(~r) + . . . (5)

and obtain the result that U(n) also satisfies Laplace’s equation since

∇2U(~r) = ∇2

(

∞
∑

n=1

CnUn(~r)

)

=
∞
∑

n=1

∇2Un(~r) = 0

Theorem II is called the Uniqueness Theorem. It’s importance rests
with the fact that any solution to Laplace’s equation which satisfies
all boundary conditions on the solution is unique (up to an arbitrary
additive constant). This means in essence that equation (5) of the
Supplementary Notes is the general solution to Laplace’s equation in
the particular coordinate system. In practice, then the solution of
Laplace’s equation with a given set of boundary conditions proceeds
as follows:
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1. Choose a coordinate system which exploits any symmetries in the
potential problem.

2. Write down the expansion in eq. 5 for the potential,

U =
∑

n

CnUn

3. Use physical and / or mathematical arguments to determine the
constants Cn so that U satisfies all boundary conditions. Usually,
only a few of the Cn are non-zero. If the appropriate coordinate
system has been chosen, this determination of the Cn is relatively
straightforward.

4. The expression determined in step 3 must then be the solution to
the given potential problem up to an arbitrary additive constant.

III. Zonal and Cylindrical Harmonics

The zonal and cylindrical harmonics are the solutions Un(~r) in spher-
ical and cylindrical coordinates when the potential is independent of
the azimuthal coordinate φ and z-coordinate, respectively. The ex-
pressions for each set of solutions are as follows:

Zonal harmonics-

Un =

{

rnPn(θ) n = 0, 1, 2, . . .
r−(n+1)Pn(θ) n = 0, 1, 2, . . .

(6)

The functions Pn(θ) are known as Legendre polynomials. They are
polynomials in the variable cos θ. See Table 3-1 of the text. You will
need only the first few Legendre polynomials in this course. Then, the
general solution to Laplace’s equations is

U(r, θ) =

∞
∑

n=0

An+1r
nPn(θ) +

∞
∑

n=0

Cn+1r
−(n+1)Pn(θ) (7)

The constants An+1, have been introduced to complement the Cn+1

because of the two different types of solutions Un. Each term in the
expansion in eq. 7 can be given a physical interpretation. See Sec. 3-5
of the text for such an interpretation.

Cylindrical harmonics-

Un =

{

rn cosnθ, rn sinnθ n = 0, 1, 2, . . .
r−n cosnθ, r−n sinnθ n = 0, 1, 2, . . .

(8)
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Then,

U(r, θ) =

∞
∑

n=0

An+1r
n cosnθ +

∞
∑

n=1

A′
n+1r

n sinnθ (9)

+C1`nr +
∞
∑

n=1

Cn+1r
−n cosnθ +

∞
∑

n=1

C ′
n+1r

−n sinnθ

It may be instructive to write out the first few terms in each sum
above. Thus,

U(r, θ) = (A1 +A2r cos θ +A3r
2 cos 2θ + . . .) (10)

+(A′2r sin θ+A
′

3r
2 sin 2θ+ . . .)+C1`nr+(C2 cos

θ

r
+C3 cos

2θ

r2
+ . . .)+

(C ′2 sin
θ

r
+ C ′3 sin

2θ

r2
+ . . .)

Each term in eq. 10 above can be given a physical interpretation as
in the previous case. The constants are chosen so as to satisfy all
boundary conditions. The method of argument proceeds as outlined
in Sec. 3.5 on the use of zonal harmonics.
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