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Input Skills:

1. For a given mechanical system use Lagrange’s equations to obtain
the equations of motion for the system (MISN-0-498).

Output Skills (Knowledge):

K1. For arbitrary central force motion (a) determine the expression for
the Lagrangian in terms of center of mass and relative coordinates,
using the reduced mass concept. (b) Determine the first integrals
of motion and the generalized form of Kepler’s second law. (c)
Determine the differential equation for r as a function of angle.
(d) Define turning points and effective potentials and explain how
turning points can be determined from a graph of the effective
potential.

K2. For planetary like motion obtain the general equation of the orbit
and classify the orbits in terms of conic sections as a function of
the energy. Include definitions and/or explanations.

K3. Derive Kepler’s third law for planetary like motion.
Output Skills (Problem Solving):

S1. Given a particular central force describe qualitatively the orbit us-
ing a graph of effective potential. Set up and solve the differential
equation for the orbit.
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CENTRAL FORCE MOTION
by
C.P. Frahm

1. Introduction

There are two types of motion which play especially important roles
in classical as well as quantum) mechanics - harmonic motion and central-
force motion. Harmonic motion was covered in units 5 and 6 using New-
tons laws of motion. Central-force motion has been reserved for this unit
to illustrate the use of the Lagrangian formulation. All of the results of
this unit can be obtained, of course, without recourse to the Lagrangian
formulation. In fact you may have obtained them in a previous mechanics
course. If that is the case, this unit will serve as a review of central-force
motion as well as an example of the application of the Lagrangian tech-
nique.

2. Procedures

1. a. Read sections 8.1 and 8.2 of Marion.

Exercise: Fill in the details leading to eq. 8.4 of Marion.

b. Read section 8.3 of Marion.
Exercise: Fill in any missing details in the analysis leading to
egs. 8.7, 8.10, 8.12 and 8.14 of Marion.

c. Read section 8.4 of Marion.
Exercise: Fill in any missing details in the analysis leading to
eqs. 8.17 and 8.20.

d. Read sections 8.5 and 8.6 of Marion.

2. Read section 8.7 of Marion. Note that a and b are generally called the
semi-magor and semi-minor axes while 2a and 2b are called the major
and minor axes.

Exercise: Fill in any missing details in the analysis leading to eq. 8.39
and 8.41.

Review the definitions and properties of conic sections (as needed) by
working through Sect. 3.

Exercise: Fill in any missing details in the analysis leading to egs. 8.42
- 8.44 and 8.48.
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Read section 8.9 and the first two paragraphs of section 8.10 in Mar-
ion. You are not responsible for this material, but it is worth reading
through one time.

3. Work problems 8-4, 8-13, 8-14, 8-15 and 8-23 in Marion.

3. Conic Sections

A1l conic sections can be represented by the single mathematical
expression
Q@
— =14 €cosh,
r

where r and 6 are radial and angular variables respectively while € and «
are constants:
€ = eccentricity,

o = semi-latus rectum.

The name conic section comes from the observation that these curves are
precisely those obtained as the perimeters of slices (or sections) through
a right circular cone.

1. ellipse - the locus of points for which the sum of the distances from
two fixed points (F, F’ = foci) is a constant (see Fig. 1).

By definition for any point P on the ellipse:
r 4+ 7 =2Q = constant.
Inspection of the figure then shows that
OV = FB = a = semimajor axis,

and
VV’' = 2a = major axis = intervertical distance.

For convenience let:
b= OB = semiminor axis,

€ = interfocal distance.

Then inspection of the figure again shows that

OF = ae,
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Figure 1. .
b= a\/m .
To determine the equation of the ellipse note that the definition gives:
("2 = (2a —r)? = 4a* — dar + 1%,
while the law of cosines gives
()2 =72 4 4a*€* — 2(2a¢€)r cos(m — 6),
=12 + 4a%e® + daer cos b .
Equating these and rearranging gives

a(l —¢€?)

=1+e€cosf.

This is the equation of a conic section with
€ = eccentricity
(justifying the earlier choice of notation)
a =a(l — %) = semi-latus rectum .

Letting # = 7/2 in the equation of the ellipse and consulting the figure
reveals that
FA=q«.
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Figure 2. .

. parabola - the locus of points equidistant from a straight line (D =

directrix) and a point (F' = focus) (see Fig. 2).

For convenience let a

5= Fv=VO.
Then from the figure for any point P on the parabola
r+rcosf =a,

so that a
— =1+cosf.
r

This is the equation of a conic section with an eccentricity of 1 and
with
« = a = semi-latus rectum.

Letting 8 = —x /2, shows that

FA=q.

. hyperbola - the locus of points for which the difference between the

distances from two fixed points (F, F’ = foci) is a constant (see Fig. 3).
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Figure 3. .

By definition for any point P on the hyperbola
r —r’ =2a = constant.
Inspection of the figure then shows that
OV =a.
As in the case of the ellipse it is convenient to define

interfocal distance

intervertical distance -
The definition of a hyperbola then gives
(r")? = (2a +r)? = 4a® + dar + 1%,
which with the law of cosines gives
(r")? = r? + 4a*€* — 4(4ae)r cos .
Equating and rearranging yields

a(e2 —1)

=1+ e€cosh.
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