
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-498

HAMILTON’S PRINCIPLE,

LAGRANGE’S EQUATIONS

Classical
Mechanics

1

HAMILTON’S PRINCIPLE, LAGRANGE’S EQUATIONS

by

C.P. Frahm

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2



ID Sheet: MISN-0-498

Title: Hamilton’s Principle, Lagrange’s Equations

Author: C. P. Frahm, Physics Dept., Illinois State Univ

Version: 2/1/2000 Evaluation: Stage B0

Length: 2 hr; 8 pages

Input Skills:

1. Use the variational technique to obtain Euler’s equations for the
solution of the basic problem in the calculus of variations (MISN-
0-497).

Output Skills (Knowledge):

K1. Vocabulary: Lagrangian, degree of freedom, generalized coordi-
nates (proper and improper), configuration space, phase space,
holonomic constraints.

K2. State Hamilton’s principle in terms of generalized coordinates.

K3. Explain the physical significance of Lagrange’s undetermined mul-
tipliers.

K4. Derive Lagrange’s equations for generalized coordinates from
Hamilton’s principle. State the conditions under which the deriva-
tion is valid.

K5. Derive Lagrange’s equations with undetermined multipliers for
systems with constraints. State the conditions undo which the
derivation is valid.

Output Skills (Problem Solving):

S1. For a given mechanical system find the Lagrangian and use La-
grange’s equations to obtain the equations of motion for the sys-
tem.

S2. Use Lagrange’s equations with undetermined multipliers to find
the forces of constraint on a given system.

External Resources (Required):

1. J.Marion, Classical Dynamics, Academic Press (1988).
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LAGRANGE’S EQUATIONS

by

C. P. Frahm

1. Introduction

The previous unit established the mathematical fundamentals of vari-
ational calculus. The present unit is concerned with the application of
the variational calculus to classical mechanics. In particular, it will be
seen that all of classical mechanics can be formulated in terms of a sin-
gle variational principle known as Hamilton’s principle. Euler’s equations
resulting from Hamilton’s principle are known as the Euler - LaGrange
equations or simply Lagrange’s equations. These equations will be used
in this unit to solve a number of mechanical problems which are diffi-
cult to handle in the Newtonian formulation. It should be noted that
the formulation of classical mechanics in terms of Hamilton’s principle is
completely equivalent to the Newtonian formulation. No new physics is
included in Hamilton’s principle! However, as pointed out in the introduc-
tion to MISN-0-497, the variational approach does provide new insights
and facilitates the solution of certain kinds of problems.

2. Procedures

1. Read sections 7.1 through 7.4 of Marion. On this first reading, con-
centrate on the general ideas and the important definitions. Do not be
concerned with mathematical details.

Optional - Read sections 6-1 through 6-3 in Greenwood.

Write down definitions for each of the quantities in Output Skill K1.

Optional - Marion does not discuss generalized forces. The simplest
way to define the generalized force Q. associated with the generalized
coordinate qj is as follows

Qj =
∑

i

~Fi ·
∂~ri

∂qj

,

where ~Fi is the total force on the i
th particle and ~ri is the position of the

ith particle. Note that the sum is over all particles. The significance
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of generalized forces can be seen by considering a small change (δqj)
in the jth generalized coordinate at a particular time while holding all
other generalized coordinates fixed. Then

Qjδqj =
∑

i

~Fi ·
∂~ri

∂qj

δqj =
∑

i

~Fi · δ~ri = δW .

Thus Qjδqj is the amount of work that would be done by all forces act-
ing at the chosen time if the system were to undergo a displacement in
which the jth generalized coordinate alone changed by an amount δqj .
The similarity between Qjδqj for generalized quantities and Fxδx for
cartesian quantities makes the usage of the terminology “generalized
force” for Qj self-evident.

Note: If the generalized coordinates are improper then the constraint
equations are ignored when the displacements δqj are made.

Optional - Read section 6-5 in Greenwood.

2. Reread sections 7.1 through 7.4 in Marion. Fill in mathematical details
where necessary.

Write down from memory Hamilton’s principle in terms of generalized
coordinates.

Starting from Hamilton’s principle in terms of generalized coordinates,
derive Lagrange’s equations. Actually, carry through the variational
calculus. Don’t simply make a correspondence as is done in the text.

Write down the two conditions under which the preceding derivation
is valid.

Note: For non-conservative systems, there is a generalized version of
Hamilton’s principle that leads to the Euler equations

d

dt

∂T

∂q̇j

−
∂T

∂qj

= Qj .

This generalization will not be considered in this course. (The inter-
ested student is referred to Goldstein, pp 38 - 40)

3. (Optional)
Read section 7.5 in Marion. Unfortunately, this presentation is not
completely clear. Therefore, it is strongly recommended that you also
read Goldstein, pp. 40 - 44 (Begin at the second paragraph on p. 40).

Marion states near the bottom of p. 207 that the Lagrange multipliers
are the forces of constraint. It is clear from the discussion in Goldstein
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Figure 1. .

that this is not true in general. The only thing that one can say in
general is that:

∑

`

λ`a`k = Q′

k = kth generalized force of constraint .

In Example 7.9 in Marion (essentially the same as Goldstein’s example
on p. 43) it is fortuitous that the Lagrange multiplier is precisely the
frictional force. Another choice of generalized coordinates would have
resulted in a less transparent interpretation of the Lagrange multiplier.

4. Read sections 7.3 and 7.7 in Marion.

¤Work these problems in Marion: 7-3, 7-4, 7-9

Optional, for Output Skill K5:

¤ Problem – Particles m1 and m2 are constrained by frictionless con-
straints to move in the vertical x-y plane such that m1 remains on the
horizontal x-axis and m2, remains on the vertical y-axis (see Fig. 1).
The particles are connected by a massless inextensible string of length
`. The initial conditions on m1 are x(0) = `, ẋ(0) = 0 and the corre-
sponding conditions on m2 are y(0) = 0, ẏ(0) = 0. For the case where
m1 = m2 = 0, solve for the tension P in the string as a function of the
angle θ. What is the period of motion in θ?
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