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Output Skills (Knowledge):

K1. Define center of mass.

K2. State Newton’s law of universal gravitation. Define: gravitational
field, gravitational potential, lines of force, equipotential surfaces.

K3. Show each of the following for a system of particles: the total
momentum is equal to the momentum of the center of mass, the
total angular momentum is equal to the angular momentum of the
center of the center of mass plus the angular momentum about
the center of mass, the total kinetic energy is equal to the kinetic
energy of the center of mass plus the kinetic energy relative to the
center of mass.

K4. Derive from Newton’s laws each of the following for a system of
particles: (a) the total external force acting on the system is equal
to the time rate of change of the total momentum. (b) the total
external torque is equal to the time rate of change of the total
angular momentum. (c) the total work done on the system by
non-conservative forces is equal to the change in total mechanical
energy.

K5. Starting from Newton’s laws derive the law governing the motion
of a system with variable mass.
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NEWTONIAN SYSTEM OF PARTICLES

by

C. P. Frahm

1. Introduction

Physical systems seldom contain only a single particle. Instead there
are usually many particles making up larger objects whose size or internal
structure cannot be ignored. The larger objects may be rotating, colliding
with each other or flying apart. One can in principle apply Newton’s
laws as formulated in the preceding unit to each separate particle of each
object and proceed to make calculations. Unfortunately for most systems
of interest there are so many particles (molecules, for example) to deal
with that this procedure is impractical. However, it is still possible to
utilize Newton’s mechanics in a very general and powerful way for such
multi- particle systems. By introducing the concept of the center of mass
of a system of particles, it is possible to deduce some very useful theorems
regarding the motion of the system as a whole without having to deal with
each separate particle. This unit is concerned with such analyses of multi-
particle systems along with a review of some aspects of Newton’s law of
gravitation.

2. Procedures

1. a. Study Equations 9.2 to 9.3 of Marion.

b. For the second, third, and fourth items in Output Skill K3 (mo-
mentum, angular momentum and kinetic energy), the total for the
system is just the sum (scalar or vector, whichever is appropriate)
of the corresponding quantities for the individual particles. In each
case, the total can be expressed as the sum of two terms one associ-
ated with the motion of the center of mass (denoted by a subscript
com) and another associated with the motion of the particles rel-
ative to the center of mass (denoted by a subscript rel). Thus for
momentum, one has:

~P ≡
∑

α

~Pα =
∑

α

mα
˙~αr =

∑

α

mα( ~̇R+ ˙~αr)

=

(

∑

α

mα

)

~̇R+
∑

α

mα
˙~αr =M ~̇R =M~V = ~Pcom .
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The quantity M is the total mass of the system while V is the
velocity of the center of mass. The expression

∑

αmα~rα is zero
since:

∑

α

mα~rα =
∑

α

mα(~rα − ~R) =
∑

α

mα~rα −
∑

α

mα
~R ,

M ~R−M ~R = 0 .

It should be noted that:
~Prel = 0 .

c. Read Marion from eq. (9.13) to Example 9.2 and also Sect. 9.4
through Eq. 9.23 and note that:

~Lcom = ~R× ~P ,

~Lrel =
∑

α

~rα × ~pα, ~pα ≡ mα
˙~αr .

d. Read Marion Eq. 9.36 through Eq. 9.39 and note that:

Tcom =
1

2
MV 2 ,

Trel =
∑

α

1

2
mαv

2
α .

2. The simplest way to derive these laws is to make use of the results of
the previous unit and sum over the particles of the system. (Marion
seems to go through a lot of unnecessary gyrations). Recommended
derivations are outlined below.

a. From MISN-0-493 (Newton’s second law for the α-th particle):

~Fα =
d~Pα

dt
.

Summing on all particles gives:

∑

α

~Fα =
∑

α

d~Pα

dt
=

d

dt

∑

α

~Pα =
d~P

dt
.

Now separate ~Fα into an external part and an internal part (see
Marion Section 9.3 through eq. (9.13):

~Fα = ~F (`)
α +

∑

β

~fαβ .
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Then:
∑

α

~Fα =
∑

α

~F (`)
α +

∑

α,β

~fαβ =
∑

α

~F (`)
α ≡ ~F (`)

α .

Hence:

~F (`)
α =

~P

dt
.

b. From MISN-0-493 (Torque law for the α-th particle)

~Nα =
d~Lα

dt
.

Summing on all particles

∑

α

~Nα =
∑

α

d~Lα

dt
=

d

dt

∑

α

~Lα =
d~L

dt
.

As in part (a):

∑

α

~Nα =
∑

α

~rα × ~Fα =
∑

α

~rα × (~F (`)
α +

∑

β

~fαβ)

=
∑

α

~rα × ~F (`)
α +

∑

α,β

~rα × ~fαβ =
∑

α

~rα × ~F (`)
α =

∑

α

~N (`)
α ≡ ~N (`) .

Thus:

~N (`) =
d~L

dt
.

c. From MISN-0-493 (Mechanical energy law the α-th particle):

Wn,α = ∆Eα .

Summing over all particles:

∑

α

Wn,α =
∑

α

∆Eα = ∆
∑

α

Eα ,

or
Wn = ∆E ,

where
Wn =

∑

α

Wn,α and E =
∑

α

Eα .
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Note: Wn includes all work done by non-conservative forces whether
internal or external. Similarly, E contains all potential energies
whether internal or external.

Note: Other laws such as the impulse law or the conservation laws
can now be easily derived as in the single particle case.

3. Within the context of classical mechanics the mass of a particle is con-
stant. Hence if one wishes to consider an object whose mass is variable,
then that object should, strictly speaking, be thought of as a system of
particles rather than as a single particle. However, if that one object is
the dominant one under discussion, then it is often convenient to use a
pseudo-particle formulation of Newtonian mechanics which treats the
object as a single entity with a variable mass. Such a formulation can
be derived from the impulse law for a system of particles. For a small
time interval ∆t this law takes the form:

~F (`)∆t ≈ ∆~P .

Although the result is the same, it is convenient to consider two cases,
one when the object gains mass and one where the object loses mass.

Case 1. Object gains mass (change in mass = ∆m > 0):

Dm

time t time t + tD

v
`

0

m

v
` m + mD

v
`

+ v
`

D

~F (`)∆t ≈ (m+∆m)(~v +∆~v)− (m~v +∆m~v0) ≈ m∆~v + (~v − ~v0)∆m.

Thus,

~F (`) = m
d~v

dt
+ (~v − ~v0)

dm

dt
.

Case 2. Object loses mass (change in mass = ∆m < 0):
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time t time t + tD

- mD

v
`

0

m

v
`

m + mD

v
`

+ v
`

D

~F (`)∆t ≈ [(m+∆m)(~v +∆~v)−∆m~v0]−m~v ≈ m∆~v + (~v − ~v0)∆m.

Thus:
~F (`) = m

d~v

dt
+ (~v − ~v0)

dm

dt
.

Note: ~v is the velocity of the new mass just before it is added to the
object in Case 1, and it is the velocity of the ejected mass just after it
is ejected in Case 2.

4. If one wants to use Newton’s second law in the predictor role to which
we have assigned it, it is necessary to know in advance the force(s)
acting on a particle. This knowledge can be obtained in one of two
ways: first by measuring the force, that is, using the definition of force
in terms of the standard mass; and second, by calculating the value
of the force from another fundamental law (assuming such a law is
known). Within the context of classical mechanics, there is only one
type of force for which the force law is known (at least to a good
approximation). This is, of course, gravitation and the force law is
again due to Newton. There are three other known basic forces in
nature: the electromagnetic force, the strong nuclear force and the
weak nuclear force. Only for the first of these have we been successful
in determining the force law (i.e. the Lorentz force).

Read Marion, sections 5.1 - 5.3.

5. ¤Work problems 2-50, 5-7 and 5-8 in Marion, see Example 5.3.

Read section 4-7 of Greenwood.

¤Work problems 4-1, 4-2, 4-7 and 4-9 in Greenwood.

Bring all problem solutions to the exam.
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