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CAUCHY RESIDUE THEOREM AND DEFINITE INTEGRALS

by

R.D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction

This is the last unit in your introduction to the theory of complex
variables and its applications to physics and engineering. The Cauchy
Residue Theorem is of powerful use in evaluating many of the integrals
which regularly occur in physics and enginering.

2. Procedures

1. Review Procedure - Read Sec. 7.1, Singularities.

2. Read Sec. 7.2, Calculus of Residues in Arfken.

3. Read these sections in Spiegel:

Residue Theorem, pages 289 to 290

Evaluation of Definite Integrals, page 290

4. Write down the definition of Cauchy Principle Value as given in
eq. (7.12) of Arfken.

5. Write down the Cauchy Integral Theorem 13.1 on page 290 of Spiegel.
Note all conditions of f(z).

6. Write down the formulas for evaluating these definite integrals:

a.
∫ 2π

0

f(sin θ, cos θ)dθ

as in eqns (7.25) and (7.28) of Arfken.

b.
∫

∞

−∞

f(x) dx

as in eq. (7.31) of Arfken. The conditions on f(x) are listed imme-
diately after eq. (7.29) of Arfken.
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c.
∫

∞

−∞

f(x)eıαx dx

as in eq. (7.44) of Arfken. The conditions on f(x) are given in
eq. (7.38) of Arfken.

d. Integrals with a singularity on the contour of integration as in Ex-
ample (7.2.3) of Arfken.

Note: These same integrals are discussed on page 290 of Spiegel as well
as in the Solved Problems in Spiegel. The next procedure will refer
you to these Solved Problems.

7. Read through the following Solved Problems of Spiegel:

13.23 (Proof of Cauchy Residue Theorem)

13.25 (Proof of Cauchy Residue Theorem)

13.29 (Evaluation of Definite Integrals)

13.30 (Evaluation of Definite Integrals)

13.31 (Evaluation of Definite Integrals)

13.32 (Evaluation of Definite Integrals)

13.34 (Evaluation of Definite Integrals)

13.35 (Evaluation of Definite Integrals)

13.37 (Evaluation of Definite Integrals)

8. Solve the following problems in Arfken:

7.2.8 (Evaluation of Definite Integrals)

7.2.9 (Evaluation of Definite Integrals)

7.2.12 (Evaluation of Definite Integrals)

7.2.14 (Evaluation of Definite Integrals)

9. Solve the following problems in the Supplementary Problem section of
Spiegel:

13.88 (Evaluation of Definite Integrals)

13.90 (Evaluation of Definite Integrals)

13.91 (Evaluation of Definite Integrals)

13.100 (Evaluation of Definite Integrals)

13.103 (Evaluation of Definite Integrals)
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3. Supplementary Note

At various times, the residues of the function f(z) = 1/zn+b at each
of the poles are needed.

It is easy to calculate the residue using L’Hospital’s rule. Thus, if z0

is a pole of f(z), then,

a−1 = limz→z0

(z − z0)

zn + b
= limz→z0

d/dz(z − z0)

d/dz(zn + b)

a−1 = limz→z0

1

nzn−1
=

1

nzn−1

0

= −
z0

nb

Since zn0 = −b so that 1/zn−1

0
= −z0/b.

Acknowledgments

The author would like to thank Illinois State University for support in
the construction of this lesson. Preparation of this module was supported
in part by the National Science Foundation, Division of Science Education
Development and Research, through Grant #SED 74-20088 to Michigan
State University.

7 8



9


