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BOUNDARY CONDITIONS:

VIBRATING STRINGS, HEAT DIFFUSION

by

R.D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction

In this unit, you will come face to face with two very important
applications of Fourier series and integrals in the solution of problems
involving vibrating systems and heat diffusion. Partial differential equa-
tions of various types will be introduced and analyzed first. Then, the
diffusion equation is derived in order to illustrate how a physical prob-
lem results in such a partial differential equation. Finally, solutions to
boundary value problems involving vibrating strings and heat diffusion
are obtained. Since this unit has a rather extensive reading assignment, I
will cut off my introductory remarks here so that you can get started on
the unit.

2. Procedures

1. a. Read pages 258-260 of Spiegel.

b. The question of appropriate boundary conditions in a physical
problem is a touchy one in which you can only gain skill by ex-
perience. In order to give you a conceptual framework to use in
your future work read Section 1, page 9-3 to 9-7 of the Supplemen-
tary Notes.

2. Write down or underline in the text each of the definitions and con-
cepts of Output Skill K1.

3. Read through the Solved Problems 12.1 and 12.2 on “Classification
of Partial Differential Equations” in Spiegel, page 261.

4. Solve Supplementary Problems 12.29 and 12.30 on “Classification of
Partial Differential Equations” in Spiegel, pages 277-278.

5. Write down the derivation of the diffusion equation as given in Sec-
tion II, page 9-7 to 9-9, of the Supplementary Notes. You will be
asked to write down this derivation from memory on the Unit Test.
WARNING: Although I have used the word memory here, the most

5

MISN-0-486 2

efficient way to remember a derivation is to understand the concepts
involved.

6. Read through Solved Problems 12.6, page 263, of Spiegel. This prob-
lem gives an alternative derivation of the source-free diffusion equa-
tion.

7. Read through Solved Problems 12.6, pages 266-267, of Spiegel on
solving a heat diffusion problem using separation of variables.

8. Read through Sections III to V, pages 9-9 to 9-20, of the Supple-
mentary Notes. These sections treat the solution of B.V. P. involving
vibrating strings and heat diffusion.

9. Read through Solved Problems 12.17, 12.18, 12.19, 12.21, and 12.23
of Spiegel on B.V. P. involving vibrating strings and heat diffusion.

10. Solve the Supplementary Problems 12.29, 12.30, 12.48, 12.50, 12.53,
12.65, and 12.66∗ of Spiegel on B.V.P. involving vibrating strings
and heat diffusion. You may simply apply the appropriate boxed
equations from the Supplementary Notes.

Note: You are allowed one sheet of 8.5′′×11.0′′ paper containing the
boxed equations in the Supplementary Notes when taking the Unit Test.
The sheet can also contain the B.V. P. for which the boxed equations are
solutions.

∗ Correct answer is:

u(x, y) =
µ0

2
+
µ0

π
tan−1 x

y
.

3. Supplementary Notes

3a. Boundary Conditions. A physical problem is not uniquely spec-
ified if the partial differential equation which the solution of the problem
must satisfy is given. There is an infinite number of solutions of the partial
differential equations listed on pages 259 and 260 of Spiegel. Any phys-
ical problem must state not only the partial differential equation which
is to be solved but also the boundary conditions which the solution must
satisfy. In fact, satisfying of the boundary conditions (B.C. ) is often as
difficult a task as the solving of the partial differential equation (P.D.E. ).
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However, the solutions of a given P.D.E. cannot be made to satisfy
any sort of B.C. For each type of P.D. E. . on pages 259 and 260 of
Spiegel, there is a definite set of B.C. which will give unique answers.
An actual physical problem will always have the right sort of B.C. to
give it a unique answer (we hope!), and if the statement of the problem
corresponds to reality, the right B.C. are guaranteed. But it is not always
easy to tell just what B.C. correspond to “reality.” Thus, the types of
B.C. which are suitable for various P.D.E. are given below. This can
guide a scientist or engineer in making his mathematical problem fit the
physical problem as closely as possible. The best and most accessible
reference on B.C. in P.D.E. remains Morse and Feshbach, Methods of

Theoretical Physics, Sec. 6.1, pages 676-692, McGraw-Hill (1953).

There are essentially four types of B.C. In order to make the defini-
tions precise, let the P.D.E. be written

A(x, y)
∂2u

∂x2
+B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2

∂y2
= H(x, y,

∂u

∂x
,
∂u

∂y
) (1)

where

H(x, y) = D(x, y)
∂u

∂x
+ E(x, y)

∂u

∂x
+ F (x, y)u−G(x, y) (2)

The functions A, B, C, D, E, F , and G are specified functions of x and y
in some domain R bounded by a curve S. The two variables x and y may
be either two space coordinates or one space and one time coordinate.
(If there are three spatial dimensions involved, R is a volume V and S
is a surface). From this point of view, initial conditions are boundary
conditions in time. Then the four types of B.C. are:

1. Dirichlet B.C. The value of u is specified on S.

2. Neumann B.C. The value of the normal derivative ∂u/∂n is specified
on S.

3. Cauchy B.C. The values of u and ∂u/∂n are specified on S.

4. Mixed B.C. Some combination of the above three types of B.C. are
given for various portions on S.

The P.D.E. are classified as in Spiegel on page 258:
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1. Elliptic equations have B2 − 4AC < 0. Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 (3)

and Poisson’s equation

∂2u

∂x2
+
∂2u

∂y2
= −4πρ(x, y) (4)

are examples.

2. Hyperbolic equations have B2 − 4AC > 0. The wave equation

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 (5)

is an example.

3. Parabolic equations have B2 − 4AC = 0. The diffusion equation

∂2u

∂x2
− 1
κ

∂u

∂t
= 0 (6)

is an example.

As an example, the solution of Poisson’s equation inside a volume V
subject to either Dirichlet or Neumann B.C. on the closed surface S is
unique. To show this, assume that there are two functions u1 and u2 such
that

∇2u1 = −4πρ
and

∇2u2 = −4πρ (7)

where either u1 and u2 are given an S (where u1 = u2 on S) corresponding
to Dirichlet B.C. or ∂u1/∂n and ∂u2/∂n are given on S (where

∂u1

∂n
=
∂u2

∂n
(8)

on S) corresponding to Neumann B.C. Then define U = u1 − u2. Now,
U = 0 on S if Dirichlet B.C. hold, or ∂U/∂n = 0 on S if Neumann B.C.
hold. Applying eq. (1.101) of Arfken gives

∫

V

(U∇2U + ~∇U · ~∇U) dτ =
∫

V

~∇ · (U ~∇U) dτ (9)
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=

∫

S

U ~∇U · d~σ .

So,
∫

V

(U∇2U + ~∇U · ~∇U) dτ =
∫

S

U
∂U

∂n
dS (10)

where d~σ = n̂ dS and ~∇U · n̂ = ∂U/∂n. Also, ∇2U = 0.

But, for either type of B.C. , the surface integral vanishes, so that

∫

V

|~∇U |2 = 0 . (11)

This last equation will be true for any volume V so that

~∇U = 0 (12)

inside V . Thus,
U = constant (13)

inside V . In the case of Dirichlet B.C. , this constant is zero so that
u1 = u2. In the case of Neumann B.C. , this constant may not be zero so
u1 and u2 only differ by an unimportant arbitrary, additive constant.

It should be clear that a solution to Poisson’s equation with Cauchy
B.C. on a closed boundary (both u and ∂u/∂n specified) does not exist,
since there are unique solutions for Dirichlet and Neumann B.C. Also,
there is a unique solution to the problem in the case of mixed B.C. where
Dirichlet B.C. hold over a portion of S and Neumann B.C. hold over
the remaining part. Morse and Feshbach study the various P.D.E. and
B.C. in order to come up with the following table for the uniqueness of
solutions to P.D. F. with various B.C.

9
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3b. Type of Equation. The Table:

Type of Elliptic Hyperbolic Parabolic
B. C. (Poisson’s eq. ) (wave eq. ) (heat-cond. eq. )
Dirichlet Unique, stable sol.

Open surface Not enough Not enough in one direction

Closed surface Unique, stable Too much Too much
solution

Neumann Unique, stable sol.

Open Surface Not enough Not enough in one direction

Closed surface Unique, stable Too much Too much
sol. in general

Cauchy Unique,

Open Surface Unphys. results stable solution Too much

Closed surface Too much Too much Too much

The application of this table can sometimes be not so straightfor-
ward, so a reading of Morse and Feshbach would be of great help. For
example, consider the wave equation which is the prototype example of
an hyperbolic equation. According to the table, a unique solution exists
for the case of Cauchy B.C. on an open surface. And, indeed, this is
true. That is, a unique solution exists for the boundary value problem
(B.V.P. )

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0, (−∞ < x <∞, 0 < t <∞) (14)

u(x, 0) = f(x), (−∞ < x <∞) (15)

and
∂u(x, 0)

∂t
= g(x), (−∞ < x <∞) . (16)

The functions g(x) and f(x) are given. This amounts to solving the
P.D.E. with Cauchy B.C. on an open surface where f(x) is the initial
displacement and g(x) is the initial velocity. The open surface (curve in
this case) is just the x-axis since there is no closure on t at infinity.
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x

t
Region R corresponds to t > 0

Curve S is line t = 0,

the x-axisi.e.

The proof that a unique solution exists is easy, but will not be done
here. See Morse and Feshbach, page 685.

On the other hand, suppose the waving medium (say a string) is
clamped at x = 0 and x = L. Then, we have these B.V. P. :

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0, (0 < x < L, 0 < t <∞) (17)

u(0, t) = u(L, t) = 0, (0 ≤ t <∞) (18)

u(x, 0) = f(x), (0 ≤ x ≤ L) (19)

and
∂u(x, 0)

∂t
= g(x), (0 ≤ x ≤ L) . (20)

The open curve S now corresponds to the lines x = 0, x = L, and
t = 0 and is U-shaped.

x

t

x = 0 x = L

Open curve SRegion R

The B.C. given in eqs. (19) and (20) amount to Cauchy B.C. on
t = 0 for 0 ≤ x ≤ L, but the B.C. in eq. (18) amounts to Dirichlet
conditions on x = 0 and x = L for t > 0. This occurs because the extra
constraint on the problem due to the clamped ends would result in the

11

MISN-0-486 8

problem being over- defined if Cauchy B.C. were given on x = 0 and
x = L. The exact reasons for this can be found in Morse and Feshbach,
page 686.

3c. Derivation of the Diffusion Equation. As an example of how a
physical model can result in one of the P.D.E. which are listed in section
8.1 of Arfken and on pages 259-260 of Spiegel, the diffusion equation will
be derived. The derivation applies to some physical quantity Q(t) of a
substance. The amount of Q per unit volume is q(~r, t). The quantity
q(~r, t) is a time-dependent scalar field. Therefore, the amount Q(t) in
volume V is given by

Q(t) =

∫

V

q(~r, t) dτ . (21)

The amount of Q(t) can change by two processes.

a) Flow of the physical quantity via a current. This flow is described by
a current vector ~j(~r, t) which is a vector field. For example, Q can be
electric charge, q can be charge density, and ~j can be electric current.

b) Sources of quantity Q in volume V . The source (or sink) is described
by a scalar field φ(~r, t) which is the rate at which Q(t) is created per
unit volume per unit time.

Thus,

dQ

dt
=

∫

V

∂q(~r, t)

∂t
dτ = −

∫

S

~j · d~σ +
∫

V

φ(~r, t) dτ . (22)

d
`

= n̂ ds s

d
`
s

n̂

n̂ = unit normal vector

to surface S at ds

j
`

ds

V

S

From the orientation of ~j and d~σ, if −~j · d~σ is a positive quantity,
then it represents the flow into V across d~σ.
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But
∫

V

~∇ ·~j dτ =
∫

S

~j · d~σ . (23)

So
∫

V

(

∂q

∂t
+ ~∇ ·~j − φ

)

dτ = 0 . (24)

This equation holds for any volume V . Therefore,

∂q

∂t
+ ~∇ ·~j = φ . (25)

This is the equation of continuity with sources. It is essentially a conser-
vation equation.

In some cases an empirical relation exists between ~j and q. Many
times it is true that a gradient of q results in a flow of quantity q from
higher to lower concentrations. Then

~j(~r, t) = −x~∇q(~r, t) . (26)

If q represents charge, then ~j represents the current density. If q is tem-
perature; then ~j represents heat flow per unit area per unit time. In the
case of heat flow, this last equation is the Fourier law of heat conduc-
tion. If q represents the concentration of a solute in a solvent, then the
last equation is called Fick’s law. Substitution of ~j in eq. (26) into the
equation of continuity, eq. (25), gives

∂q

∂t
− ~∇ · (κ~∇q) = φ . (27)

If n is constant and there are no sources or sinks of the quantity (i.e.
φ = 0), then

∇2q − 1
κ

∂q

∂t
= 0 . (28)

This is the heat conduction equation as given on page 259 of Spiegel.

3d. Solution of the Vibrating String with Ends Clamped. Con-
sider the case of a string vibrating with ends clamped. Let the coordinate
along the string be x, and the time coordinate be t. Let v be the speed
of propagation of waves on the string.
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xx = 0 x = L

shape of string at time t

displacement

at x at time t

U(x,t)

Let u(x, t) represent the displacement of the string. Then the B.V.P.
can be written

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0, (0 < t <∞, 0 < x < L) (29)

u(0, t) = u(L, t) = 0, (0 ≤ t <∞) (30)

u(x, 0) = f(x), (0 ≤ x ≤ L) (31)

and
∂u(x, 0)

∂t
= g(x), (0 ≤ x ≤ L) . (32)

The known functions f(x) and g(x) are the initial displacement and ve-
locity of the string, respectively. I shall use the method of separation of
variables to solve this problem. So assume

u(x, t) = X(x)T (t) . (33)

Then, substitution of eq. (33) in eq. (29) yields this result:

X ′′T − 1

v2
XT ′′ = 0 (34)

or
X
′

′
(x)X(x) =

T ′′(t)

v2T (t)
. (35)

The left-hand side of the above equation is a function of x alone so it
cannot vary with t. The right-hand side is a function of t alone so it
cannot vary with x. Hence, both sides must be equal to some constant,
say γ, so that

X ′′(x)− γX(x) = 0 (36)

T ′′(t)− γv2T (t) = 0 . (37)

From the B.C. in eq. (30), this result is obtained:

X(0) = X(L) = 0 . (38)
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Solution to eq. (36) can be written

X(x) = C1e
x
√
γ + C2e

−x√γ (39)

where C1 and C2 are constants. Eqs. (38) and (39) give

C1 + C2 = 0 (40)

and
C1e

L
√
γ + C2e

−L√γ = 0 . (41)

Suppose γ > 0. Then
eL

√
γ − e−L

√
γ = 0 (42)

so that
sinhL

√
γ = 0 . (43)

But, the hyperbolic sine is always nonzero when L
√
γ > 0. Thus, solutions

for X(x) only exist when γ ≤ 0. Let

γ = −β2, β2 ≥ 0 . (44)

Then, the expression for X(x) in eq. (39) can be rearranged to give

X(x) = A cosβx+B sinβx (45)

where A and B depend on C1 and C2. The B.C. in eq. (38) yield

A = 0 (46)

and
B sinβL = 0 . (47)

Thus
βL = nπ, n = 1, 2, 3, . . . (48)

The solution X(x) are actually denumberably infinite, and they can be
labeled by the integer n:

Xn(x) = Bn sin
nπx

L
, n = 1, 2, 3, . . . (49)

In the same way the solution T (t) depends on n and can be written as

Tn(t) = Cn cos
nπvt

L
+Dn sin

nπvt

L
(50)
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where Cn and Dn are constants. The full solution u(x, t) must be a linear
combination of the XnTn, because the remaining two B.C. need to be
satisfied. So, if C ′

n = BnCn and D
′
n = BnDn,

u(x, t) =

∞
∑

n=1

[

C ′
n cos

nπvt

L
+D′

n sin
nπvt

L

]

sin
nπx

L
. (51)

But

u(x, 0) = f(x) =
∞
∑

n=1

C ′
n sin

nπx

L
(52)

and
∂u(x, 0)

∂t
= g(x) =

πx

L

∞
∑

n=1

nD′
n sin

nπx

L
. (53)

Remember that 0 ≤ x ≤ L. The above two equations are Fourier sine
series on (0, L). Thus, these expressions can be written down immediately
for C ′

n and D
′
n:

C ′
n =

2

L

∫ L

0

f(x) sin
nπv

L
dx (54)

and
nπv

L
D′
n =

2

L

∫ L

0

g(x) sin
nπv

L
dx . (55)

Eqs. (51), (54), (55) are a complete solution to the original B.V. P. Nu-
merous examples are discussed in Spiegel on the pages indicated in the
Procedures. As an example, suppose

f(x) = x, when 0 ≤ x ≤ 1
= −x+ 2 when 1 ≤ x ≤ 2 (56)

and
g(x) = 0 when 0 ≤ x ≤ 2 . (57)

Then

C ′
n =

∫ 2

0

f(x) sin
nπx

2
dx =

∫ 1

0

x sin
nπx

2
dx+

∫ 2

1

(−x+ 2) sin nπx
2

dx

so

C ′
n =

8

π2n2
sin

nπ

2
. (58)

Also
D′
n = 0 . (59)
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Thus

u(x, t) =
8

π2

∞
∑

n=1

sin
nπ

2
sin

nπx

2
cos

nπvt

2
/n2, (0 ≤ x ≤ 2) . (60)

3e. Temperature in a Slab or Bar. Suppose that you are inter-
ested in the temperatures in a slab of homogeneous material bounded by
the planes x = 0 and x = L. The dimension in the y-direction can be
negligibly small and the slab can go to infinity in the z-direction.

x

z

y

x = 0 x = L

The temperature in such a slab is only dependent on the coordinate
x (and t) if the faces at x = 0 and x = L are held at the same temperature
for all z. Alternatively, the formulation will be the same for temperatures
in a bar of length L where the lateral dimensions are very small.

x
x = 0 x = L

The u(x, t) represent the temperature in such a system. Then, the
temperature satisfies the diffusion equation where n is the diffusivity. As
seen in the table in Sec. I on B.C. , the diffusion equation has a unique
solution for an open boundary with either Dirichlet or Neumann bound-
ary conditions. There could also be a mixed B.C. with Dirichlet B.C.
over part of the boundary and Neumann over the remaining part. The
openness of boundary is guaranteed by the lack of closure in t at infinity
(0 ≤ t < ∞). Dirichlet B.C. at x = 0 and x = L, namely, u(0, t) = g(t)
and u(L, t) = h(t) where g and h are known functions of time, correspond
to knowing the temperature at the faces x = 0 and x = L. Of course,
Neumann B.C. at x = 0 and x = L, that is, having ∂u/∂t at x = 0
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and x = L, correspond to knowing the rate at which the temperature is
changing. A usual case is to have one of the following cases:

1. u(0, t) & u(L, t) being constant, corresponding to constant temperature
at the faces.

2. ∂u(0, t)/∂t & ∂u(L, t)/∂t being zero corresponding to thermally insu-
lated faces .

Case 1: Let us consider this B.V. P :

∂2u

∂x2
− 1
κ

∂u

∂t
= 0, (0 < x < L, 0 < t <∞) (61)

where
u(0, t) = T0, (0 ≤ t <∞) (62)

u(L, t) = T1, (0 ≤ t <∞) (63)

u(x, 0) = f(x), (0 ≤ x ≤ L) . (64)

The function f(x) is given and is the initial temperature. Redefine the
temperature as

v(x, t) = u(x, t)− T0 − (T1 − T0)
x

L
. (65)

Then the new function v(x, t) satisfies this B.V. P. :

∂2v

∂x2
− 1
κ

∂v

∂t
= 0, (0 < x < L, 0 < t <∞) (66)

v(0, t) = v(L, t) = 0, (0 ≤ t <∞) (67)

and

v(x, 0) = f(x)− T0

(

L− x

L

)

− T1

x

L
, (0 ≤ x ≤ L) . (68)

The new temperature v(x, t) has zero temperature at the faces. This
makes the solution somewhat simpler. Of course, either of T0 or T1,
can be zero. The solution to the original B.V. P. , namely, u(x, t), can
be obtained from eq. (68) after v(x, t) is obtained from the B.V.P. in
eqs. (66), (67), and (68). The technique of separation of variables can be
used. Assume

v(x, t) = X(x)T (t) . (69)
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Then, substitution of eq. (69) into eq. (66) yields

X ′′

X
=

T ′′

κT
. (70)

Using the usual argument gives

X ′′ − αX = 0 (71)

and
T ′ − αnT = 0, α = constant . (72)

The B.C. in eqs. (67) give

X(0) = X(L) = 0 . (73)

Thus, the solution of eq. (71) can be written as

Xn(x) = Bn sin
nπx

L
, n = 1, 2, 3, . . . (74)

where

α = −n
2π2

L2
. (75)

Then, the solution of eq. (72) can be expressed as

Tn(t) = Cne
−n2π2κt/L2

. (76)

As in the previous case of the wave equation, the solution to the diffusion
equation can be written as

v(x, t) =
∞
∑

n=1

B′
ne

−n2π2κt/L2

sin
nπx

L
, B′

n = BnCn . (77)

The last B.C. in eq. (68) can be satisfied by

v(x, 0) = f(x)− T0

(

L− x

L

)

− T1

X

L
=

∞
∑

n=1

B′
n sin

nπx

L
(78)

and

B′
n =

2

L

∫ L

0

[

f(x)− T0

(

L− x

L

)

− T1

X

L

]

sin
nπx

L
dx . (79)

Thus, after some rearrangement the complete solution of the original
B.V. P. in eqs. (61), (62), (63), and (64) is

u(x, t) = T0

(

L− x

L

)

+ T1

x

L
+

∞
∑

n=1

B′
ne

−n2π2κt/L2

sin
nπx

L
(80)
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where

B′
n =

2

L

∫ L

0

[

f(x)− T0

(

L− x

L

)

− T1

X

L

]

sin
nπx

L
dx . (81)

Case 2: This problem corresponds to thermally insulated faces. The
B.V.P. is then

∂2u

∂x2
− 1
κ

∂u

∂t
= 0, (0 < x < L, 0 < t <∞) (82)

∂u(0, t)

∂x
=
∂u(L, t)

∂x
= 0, (0 ≤ t <∞) (83)

u(x, 0) = f(x), (0 ≤ xleqL) . (84)

The solution can be obtained in the same way as in Case 1 except the
presence of the time derivatives in eq. (83) results in a Fourier cosine series
on [0, L]. Thus, the solution is

u(x, t) =
1

2
A′

0

∞
∑

n=1

A′
ne

−
n2π2κt

L2 cos
nπx

L
(85)

where

A′
n =

2

L

∫ L

0

f(x) cos
nπx

L
dx, n = 0, 1, 2, 3, . . . (86)

3f. Temperatures in an Infinite and Semi-infinite Bar. As a
last application of Fourier analysis to the solution of P.D. E. , the Fourier
integrals will be used to find temperatures in an infinite and semi-infinite
bar. The B.V.P. for an infinite bar is as follows:

xx = 0

∂2u

∂x2
− 1
κ

∂u

∂t
= 0, (−∞ < x <∞, 0 < t <∞) (87)

|u(x, t)| < M, (−∞ < x <∞, 0 < t <∞) (88)

and
u(x, 0) = f(x), (−∞ < x <∞) . (89)
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Note: M is a constant, and f(x) is known.

The bar extends to ±∞ in the x-direction, but it has negligible cross-
sectional area so the temperature in the bar is a function of x alone (as
well as time t). A solution to the P.D.E. can be written as

uω(x, t) = u(ω)e−κω
2te−ıωx (90)

since ∂uω/∂t = −κω2uω and ∂2uω/∂x
2 = −ω2uω. The proportionality

constant can depend on ω. Thus, a complete solution is

u(x, t) =
1√
2π

∫ ∞

−∞
u(ω)e−κω

2te−ıωx dω (91)

where

u(ω) =
1√
2π

∫ ∞

−∞
f(x)e+ıωx dx . (92)

The B.V. P. for a semi-infinite bar is as follows:

xx = 0

∂2u

∂x2
− 1
κ

∂u

∂t
= 0, (0 < x <∞, 0 < t <∞) (93)

|u(x, t)| < M, (0 < x <∞, 0 < t <∞) (94)

u(0, t) = T0, 0 < t <∞) (95)

u(x, 0) = f(x), 0 < x <∞) . (96)

The B.C. at x = 0 corresponds to a constant temperature on the
face of the bar at x = 0. The problem can be reformulated in terms of
v(x, t) where:

v(x, t) = u(x, t)− T0 . (97)

Then, the new B.V.P. becomes

∂2v

∂x2
− 1
κ

∂v

∂t
= 0, (0 < x <∞, 0 < t <∞) (98)

|v(x, t)| < M ′, (0 < x <∞, 0 < t <∞) (99)

21

MISN-0-486 18

v(0, t) = 0, 0 < t <∞) (100)

v(x, 0) = f(x)− T0, 0 < x <∞) . (101)

A solution to the P.D.E. is simply

vω(x, t) = v(ω)e−κω
2t sinωx (102)

since
∂vω
∂t

= −κω2vω (103)

and
∂2vω
∂x2

= −ω2vω . (104)

Also
vω(0, t) = 0 . (105)

The last B.C. can be fulfilled by integrating over ω from 0 to ∞. A
factor of

√

2/π is included. Thus,

v(x, t) =

√

2

π

∫ ∞

0

v(ω)e−κω
2t sinωxdω (106)

where

v(ω) =

√

2

π

∫ ∞

0

[f(x)− T0] sinωxdx . (107)

Thus, the solution to the original B.V. P. is

u(x, t) = v(x, t) + T0 (108)

where v(x, t) is given by eqs. (106) and (107) above.
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