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FOURIER INTEGRALS: PART II

by

R.D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction

This unit is a continuation of the preceding unit. The new topics in-
clude Parseval’s identity for Fourier transforms, the convolution theorem,
and the Dirac delta function.

2. Procedures

1. Read section 15.5 of Arfken. Read pages 202-203 of Spiegel.

2. Underline in the text or write out the definitions and explanations
of the terms and concepts of Output Skill K1 using an explanatory
equation if necessary. One or two sentences should be sufficient.

3. Read part I of the Supplementary Notes, on the Convolution Theorem.

4. Read these Solved Problems in Spiegel:

8.7 (Evaluation of infinite integrals using Parseval’s Identity)

8.9 (Solving integral equations using the convolution theorem)

5. Solve these Supplementary Problems in Spiegel:

8.23 (Evaluation of infinite integrals using Parseval’s Identity: Use the
result of problem 8.16.)

8.25 (Convolution Theorem: Use the result of problem 8.16 and possi-
bly the trig identity relating sin2 to cos.)

Solve this problem in Arfken:

15.5.1 (Convolution Theorem)

6. Read part II of the Supplementary Notes, on the Dirac delta function.
Solve the problems at the end of the Supplementary Notes.
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3. Supplementary Notes: I

The Convolution Theorem

3a. The Theorem. The convolution theorem is stated in Spiegel, page
203, for arbitrary functions as long as all of the integrals exist. If the func-
tions involved have certain symmetry properties the convolution theorem
takes on alternative forms. Two examples are included in Problem 15.5.1
of Arfken which you are asked to prove. Thus:

1) If f and g are both odd functions, the convolution theorem reads

1

2

∫ ∞

−∞

f(u)g(x− u) du = −
∫ ∞

0

Fs(α)Gs(α) cosαxdα (1)

which is the first result of Problem 15.5.1 in Arfken. The convolution
of f and g [h(x) = f ∗g], on the other hand, must be an even function.
To see this consider

h(x) =
1√
2π

∫ ∞

−∞

f(u)g(x− u) du =
1√
2π

∫ ∞

−∞

f(−u)g(−x+ u) du

= − 1√
2π

∫ −∞

∞

f(u)g(−x− u) du

=
1√
2π

∫ ∞

−∞

f(u)g(−x− u) du

so h(x) = +h(−x).
Thus

1

2

√
2πh(x) = −

∫ ∞

0

Fs(α)Gs(α) cosαxdα

and
π

2

√

2

π

∫ ∞

0

h(x) cosα′x dx =

−
∫ ∞

0

dαFs(α)Gs(α)

∫ ∞

0

dx cosα′x cosαx . (2)

But it can be shown that

2

π

∫ ∞

0

cosαx cosα′x dx = δ(α− α′) (3)
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where δ(α−α′) is the Dirac delta function. (See the next section of the
Supplementary Notes. Then, try to prove Eq. 3). Thus, the alternative
to Eq. 18 of Spiegel results from Eqs. 2 and 3:

Hc(α) = −Fs(α)Gs(α) . (4)

2) If f and g are both even functions, the convolution theorem reads

1

2

∫ ∞

−∞

f(u)g(x− u) du =

∫ ∞

0

Fc(α)Gc(α) cosαxdα (5)

which is the second result of Problem 15.5.1 in Arfken. Again the
convolution of f and g (h = f ∗ g) is an even function. Using the same
analysis as above gives

Hc(α) = Fc(α)GC(α) (6)

as the alternative to Eq. 18 of Spiegel.

3b. Example. The solution of Solved Problem 8.9 of Spiegel is
actually not quite correct since Fourier cosine transforms must be used.
A proper solution rests on the use of Eqs. 5 and 6 above. To carry out
this correct solution rewrite the integral equations as

∫ ∞

−∞

f(u) du

(u− x)2 + a2
=

1

x2 + b2
, 0 < a < b .

The right-hand side is an even function of x. Therefore, the left-hand
side must be an even function of x. Thus can only be true if f(u) is
even since

∫ −∞

∞

f(u) du

(u+ x)2 + a2
=

∫ ∞

−∞

f(−u) du
(u+ x)2 + a2

=

−
∫ −∞

∞

f(u) du

(u− x)2 + a2
=

∫ ∞

−∞

f(u) du

(u− x)2 + a2
.

Thus, if g(u) = 1/(u2+ a2) and the convolution of f and g (defined as
h = f ∗ g) is given by

h(x) =
1√
2π

1

x2 + b2
,

the Convolution Theorem for these functions reads:

Hc(α) = Fc(α)Gc(α) .
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Now, from the definition of the functions,

Hc(α) =

√

2

π

1√
2π

∫ ∞

0

cosαx

x2 + b2
dx =

1

πb

∫ ∞

0

cosαbx

x2 + 1
dx

Hc(α) =
1

2b
e−αb .

Likewise,

Gc(α) =

√

2

π

∫ ∞

0

cosαx

x2 + b2
dx =

√

2

π

1

a

∫ ∞

0

cosαx

x2 + 1
dx

Gc(α) =

√

π

2

1

a
e−αa .

Thus

Fc(α) = Hc(α)/Gc(α) =
1√
2π

a

b
e−α(b−a) .

Now

f(u) =

√

2

π

∫ ∞

0

Fc(α) cosαudα

=
1

π

a

b

∫ ∞

0

e−α(b−a) cosαudα

=
a

b

(b− a)

u2 + (b− a)2
.

4. Supplementary Notes: II

The Dirac delta function

4a. The Function. Consider eq. (4) on page 201 of Spiegel or
eq. (15.20) of Arfken,

f(x) =
1

2π

∫ ∞

−∞

dx′
∫ ∞

−∞

dωf(x′)e−ıω(x−x′)

=

∫ ∞

−∞

dx′
[

1

2π

∫ ∞

−∞

dωe−ıω(x−x′)

]

f(x′)

=

∫ ∞

−∞

dx′K(x− x′)f(x′) .
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I have purposefully written this equation in a way which shows that f(x)
can be written as an integral over all x with f(x) appearing in the in-
tegrand. Thus, the function multiplying f(x), that is K(x − x′), in the
integrand must have some rather strange properties. K(x − x′) must be
very small for x 6= x′ so that contributions to the integrand from this
portion of the integration region are small while K(x− x′) must be large
when x = x′ so that contributions to the integral from the integrand when
x = x′ are enhanced. The function K(x−x′) is given a special name and
notation. K(x−x′) is written δ(x−x′) and called the Dirac delta function.
The dirac delta function has these two properties, by definition:

1. δ(x) = 0 if x 6= 0.

2.
∫ b

a
δ(x) dx = 1 when a < x < b.

Obviously, δ(x− x′) satisfies these properties:

1. δ(x− x′) = 0 if x 6= x′.

2.
∫ b′

a′
δ(x− x′) dx′ = 1 when a′ < x′ < b′.

The proof is accomplished by letting x → x − x′ so that dx → dx′

and a′ = a+ x′ and b′ = b+ x′.

4b. Representations of δ(x). A representation of the Dirac delta
function is an explicit algebraic formula which satisfies the two criteria
above. Such representations include some type of limiting process either
explicitly or implicitly.

A representation of the Dirac delta function is

δ(x) =
1

2π

∫ ∞

−∞

e−ıωxdω .

Suppose x 6= 0, then

δ(x) =
1

2π
limN→∞

∫ N

−N

e−ıωx dω

=
1

2π
limN→∞

e−ıωx

−ıx

∣

∣

∣

∣

N

−N

=
1

π
limN→∞

sinNx

x
.
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Here is a graph of sinNx/πx:
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The zeroes occur at xn/N while the function has a maximum value
N/π at x = 0. The function approaches zero as x→ ±∞.

As N → ∞, the height of the central peak goes to infinity, and
the zeroes of the function approach x = 0 and get infinitesimally close
together.

Thus

limN→∞
sinNx

πx

= ∞ if x = 0;

= a rapidly oscillating quantity (if x 6= 0) which when multiplied
by a smooth function and integrated gives zero.

Also,

1

2π

∫ ∞

−∞

dx

∫ ∞

−∞

dωe−ıωx = limN→∞
1

π

∫ ∞

−∞

sinNx

x
dx

= limN→∞
1

π
· π = 1 .

The interchange of the limiting process and the integration although not
valid if the integral is an ordinary Riemann integral is allowed when the
Dirac delta function is involved. It is obvious then that the Dirac delta
function is not a function in the ordinary sense as used in introductory
calculus. It is in fact a more general quantity, that is, a distribution.
The mathematical step of interchanging the limit and integration above
can be justified by appealing to the theory of distributions as developed
by Laurent Schwartz. Essentially, the idea is to ignore the infinite jump
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discontinuity in δ(x) at x = 0 when performing calculations. For example,
consider this alternative representation of the Dirac delta function:

δ(x) =
1

2

d2

dx2
|x|, −∞ < x < +∞ .

Examine these diagrams:

x

| x |

+1

-1

x

d

dx
|x |

and

x

¥ d

dx
|x |

2

2

where I have separated the 0 value of d2/ dx2|x| for x 6= 0 from the x-axis
for clarity. Obviously,

1

2

d2

dx2
|x| = 0 if 6= 0.

Also,

1

2

∫ ∞

−∞

d2

dx2
|x| dx = 1

2
limN→∞

[

d

dx
|x|

]N

−N

=
1

2
limN→∞[1− (−1)] = limN→∞1 = 1 .
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The infinite jump discontinuity at x = 0 is ignored when performing the
integral.

4c. Properties of the Dirac delta function.

1) xδ(x) = 0 for −∞ < x < +∞.
Proof:

xδ(x) = 0 if x 6= 0 since δ(x) = 0 if x 6= 0.

xδ(x) = 0 if x = 0 since 0 · δ(0) = 0 ignoring the infinite jump discon-
tinuity at x = 0 in δ(x).

2) f(x)δ(x− a) = f(a)δ(x− a)

Proof:

f(x)δ(x− a) = [f(x)− f(a)]δ(x− a) + f(a)δ(x− a).

But, δ(x− a) = 0 if x 6= a, and [(f(x)− f(a)] = 0 if x = a. Thus,

f(x)δ(x− a) = f(a)δ(x− a) .

Note:
∫∞

−∞
f(x)δ(x− a) dx = f(a)

∫∞

−∞
δ(x− a) dx = f(a).

3)
∫∞

−∞
f(x)δ′(x− a) dx = −f ′(a)

where the prime means differentiation with respect to x.

Proof:

d

dx
[f(x)δ(x− a)] = f ′(x)δ(x− a) + f(x)δ′(x− a) .

So,

d

dx
[f(x)δ(x− a)] = f ′(a)δ(x− a) + f(x)δ′(x− a) .

Integrating,

∫∞

−∞

d

dx
[f(x)δ(x−a)] dx =

∫∞

−∞
f ′(a)δ(x−a) dx+

∫∞

−∞
f(x)δ′(x−a) dx,

but

d

dx
[f(x)δ(x− a)] = limN→∞[(f(x)δ(x− a)]N

−N = limN→∞0 = 0 .

So,
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0 = f ′(a) +
∫∞

−∞
f(x)δ′(x− a) dx .

4) δ(x) = +δ(−x) .
Proof:

δ(x) = δ(−x) = 0 if x 6= 0.
Also,
∫∞

−∞
δ(−x) dx = −

∫ −∞

∞
δ(+x) dx =

∫∞

−∞
δ(x) dx = 1 .

4d. Problems on the Dirac delta function.

1) Prove that if a is real and a 6= 0, then

δ(ax) =
1

|a|δ(x) .

2) Show that:

δ[(x− a)(x− b)] =
1

|a− b| [δ(x− a) + δ(x− b)] .

3) Show that each of these is an alternative representation of the Dirac
delta function:

δ(x) =
1√
π
limε→0

1√
ε
e−x2/ε

δ(x) =
1

π
limε→0

ε

x2 + ε2
.

4d. Supplemental Reading. (Optional) For more discussion on the
Dirac delta function, read section 1.15 of Arfken.
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