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Input Skills:

1. Unknown: assume (MISN-0-476).

Output Skills (Knowledge):

K1. Identify a certain part of the metric tensor with the Newtonian
potential by taking the weak-field approximation of the geodesic
equations.

K2. Obtain in harmonic coordinates the linearized (weak-field) approx-
imation of Einstein’s field equations.

K3. Relate the constant K in Einstein’s field equations with Newton’s
gravitational constant.

K4. Define or explain each of the following: (a) primary motivation
which led Einstein to the general theory of relativity, (b) inertial
mass and gravitational mass, (c) active and passive gravitational
mass, (d) weak, semi-strong and strong equivalence principles, (e)
local inertial frame, and the dependence of a frame’s extension
upon the desired degree of accuracy (f) special relativity as a local
theory, (g) bending of light and the gravitational Doppler shift as
qualitative consequences of the equivalence principle.

K2. Define or explain: (a) Riemannian space and metric, (b) indefinite
metric and signature, (c) geodesics, (d) geodesic separation (de-
fine and derive formula for), (e) curvature (for 2-dim and n-dim
surfaces), (f) geodesic deviation, (g) isometric spaces.

K3. Outline the basic scheme of general relativity with special empha-
sis on the roles played by the equivalence principle, by geodesics
and by masses.

K4. Derive expressions for (a) the gravitational Doppler shift (and time
dilation), (b) the spacetime metric around a spherical mass.

External Resources (Required):

1. W.Rindler, Essential Relativity, van Nostrand (1977).
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WEAK-FIELD APPROXIMATION AND GRAVITATIONAL WAVES

by

C. P. Frahm

1. Introduction

Einstein’s Field equations, discussed in the previous unit, are highly
non-linear and hence difficult to handle in general. However, if the field is
weak (in the Newtonian sense) then it is natural to expect that the field
equations can be adequately approximated by a set of linear equations
which are much easier to work with. This, in fact, is the case as will be
demonstrated in this unit. Furthermore, it will be found that this linear
approximation has the form of a wave equation and hence predicts the ex-
istence of gravitational waves. Finally, if the system is static (rather than
dynamic as in the case of wave motion) it will be seen that the linearized
(weak-field) equations reduce to Poisson’s equation thereby permitting an
identification of the constant k in Einstein’s field equations.

2. Procedures

1. Read section 4 on pp. 77-79 of Weinberg.

¤ Exercise - Fill in any missing details in the analysis leading from the
geodesic equations to eq. 3. 4. 5 in Weinberg. Note - Weinberg uses a
signature (−1, 1, 1, 1) so that you should obtain

goo = 1 + 2φ

2. Read pp. 251-255 of Weinberg. (For the purposes of this unit it is
probably best to omit the material beginning just after eq. 10. 1. 6 and
extending through the next paragraph).

Note - Weinberg’s Tµν is the same as Rindler’s Tµν . Also Weinberg has
already identified k with 8πG. You should not make that identification
yet. Stick with k for the time being. Your result for eq. 10. 1. 10 should
thus read

2
2hµν = −2kSµν

3. ¤ Exercise - Assume a static distribution of dust and show that

Tµν = ρ0δ
µ

0
δν
0
and Sµν = ρ0(δ

µ

0
δν
0
− 1/2ηµν)
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or equivalently

Tµν =









ρ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









and Sµν =
ρ0

2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









¤ Exercise - a. Use the preceding result to show that for a static
distribution of dust

∇2hoo = kρ0

b. Then by comparing with Poisson’s equation (Rindler’s eq. 8.28) and
using the result of the exercise in procedure 1 of this unit show that

k = 8πG
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