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Input Skills:

1. Unknown: assume (MISN-0-473).
Output Skills (Knowledge):

K1. Give a good plausibility argument for the form of the vacuum field
equations of general relativity, including a definition of the Ricci
tensor and a statement of its symmetry property.

K2. Establish the form of the Schwarzschild metric by: (a) writing
down and justifying the general form of the metric exterior to a
spherically symmetric static mass distribution subject to the con-
straints that (i) € and ¢ are the usual spherical coordinate angles;
(ii) 72 is the square of the radial coordinate, equal to the proper
area of a sphere concentric with the mass, divided by 47; (iii) the
metric is stationary, i.e. 0g,,/0t; (iv) the coordinates are orthog-
onal, i.e. cross terms do not occur in the metric; (b) Given the
non-zero components of the Ricci tensor for the general spherically
symmetric static metric to be able to determine the unknown func-
tions so that the metric is a solution (the Schwarzschild solution)
of the vacuum field equations.

K3. Concerning the Schwarzschild metric: (a) determine the geodesic
equations in terms of r, 8, ¢, t given the non-zero Christoffel sym-
bols; (b) determine the difference between radar distance and ruler
distance along a radial line; (c) explain the significance or lack of
significance of the Schwarzschild radius; (d) show that the proper
time required for a particle to fall from a finite height to the ori-
gin is finite while the coordinate time is infinite; (e) determine
the coordinate transformation from the curvature coordinates (or
Schwarzschild coordinates) to isotropic coordinates and interpret
the isotropic coordinates.

External Resources (Required):

1. W.Rindler, Essential Relativity, van Nostrand (1977).
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3. a. After much work (which you need not do) it is possible to show that
VACUUM FIELD EQUATIONS AND SCHWARZSCHILD’S SOLUTI@Nero Christoffel symbols for the Schwarzschild metric are
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by 9, =T% = — a=1-22
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Iy = 504041 I} = —gal/a
1. Introduction
1
_ 1 _
It was seen in MISN-0-472 that the main ingredients of General Rela- I = _5041/04 [y = —ra
tivity are 1) the equivalence principle, 2) the motion of free particles along
geodesics and 3) the determination of the space-time structure by the dis- Iy, = —rasin®?@ T2, = —sinfcosh
tribution of mass. It would appear from a logical point of view that the
last two cannot be independent since mass particles determine the space- 9 o 1 3 3 1
. . . . . . Iy =T% = - F13*F31*7
time structure which in turn determines the motion of those same parti- r r

cles. This, in fact, is the case. It can be shown that the law of geodesic
motion for free particles is contained within the field equations which de-
termine the space-time structure from the mass distribution. Hence, the
field equations are of paramount importance. This unit will thus begin
the investigation of Einstein’s field equations beginning with the simplest
case - vacuum.

I3, =13, =cotf

Note — In these expressions z° = ¢, ' = r, 22 =0, and 2> = ¢.
> Exercise — Show that the geodesic equations for the Schwarzschild
metric are (see MISN-0-473, p. 2)

d2t al dt dr

2. Procedures a2 o dx dx ’
1. Read section 8.2 of Rindler. The essential steps are: 2 1 | (dt oot fdr\? do\? . 9. [do 2
o W—l—iaa (5> %G (ﬁ) —ro (5) —rasin® 6 (ﬁ) =0
a. derivation of eq. 8.27.
b. comparison of eq.8.27 with 8.22 and identifying R,,U"U? with ﬁ ~ infcosd (@)2 2d6 dr _
the second derivative of the Newtonian gravitational potential. d\ d\ rd)\d)\
c. recalling Laplace’s equation for the potential in vacuum. 26 2dp do df
d. generalizing Laplace’s equation to R}, ,U"U? =0 e + T dN +2cot Qaa =0
e. making the field equation independent of U". > Exercise - Since o'dr/d\ = da/dX show that the geodesic equa-
2. a. Read sections 23.2 and 23.3 of Misner, Thorne and Wheeler. tion for ¢ can be written in the form
Note: Compare eq. 8.36 of Rindler with eq. 23.7 of Misner, Thorne d dt
and Wheeler. The latter authors use a slightly different notation P (04 a) =0
and a signature of (—1,1,1,1).
b. Read section 8.3 of Rindler to the bottom of page 138. and hence has a solution of the form
> Exercise - Fill in any missing details between eqgs. 8.37 - 8.41 and di k

eq. 8.43 of Rindler. k = constant

Read pages 138 - 141 of Rindler just for background information.

o’
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b. Read pages 141 - 142 of Rindler.
> Exercise - In arriving at equation 8.50 Rindler has assumed that
light signals travel along radial lines in the Schwarzschild metric.
This is equivalent to assuming that the relations

o do
dx  dx
and (from eq. 8.49)
a _ it
dx  dA

satisfy the geodesic equations. Verify that this is the case.
> Exercise - Fill in any missing details in the analysis leading to
egs. 8.50 and 8.48 in Rindler.

c. - d. Read Section 8.8 of Rindler to the top of p.153. Be sure you
understand Lemaitre’s coordinates (top of p.151).
> Exercise - Show that eq.8.83 of Rindler satisfies the geodesic
equations for a massive particle. Hint: for a massive particle, the
geodesic must be timelike ( dS? > 0 ). Hence, the particle’s proper
time(s) may be used as a parameter in place of .
> Exercise — Fill in the details in the analysis leading to eq. 8.85 of
Rindler. Rindler has assumed that the particle has unit rest mass
so that k = 1.
(Optional) > Exercise — Substitute eqs. 77.4 and 77.5 into eq. 77.3
of Rindler and recover the Schwarzschild metric.

e. > Work Exercise 23.1a on p. 595 of Misner, Thorne and Wheeler.
Use signature (1,—1,—1,—1).
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