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Input Skills:

1. Vocabulary: 4-vector, 4-velocity, 4-acceleration, covariance
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2. State the transformation property of 3-forces (MISN-0-470).

Output Skills (Knowledge):

K1. Give a plausibility argument (including a definition of 4-
momentum) for the relativistic form of Newton’s 2nd law. Base
the argument on the classical form of the 2nd law, the special
relativity postulate, and the 3-force transformation law.

K2. (a) Derive the form of the Minkowski 4-force using plausibility
arguments. (b) Determine the transformation equations for the
3-force. (c) Express the relativistic form of Newton’s 2nd law in
terms of longitudinal and transverse masses for the appropriate
special cases.

K3. (a) Given an interpretation of the time component of the mo-
mentum 4-vector in terms of the particle’s energy. (b) Establish
conservation of 4-momentum for a closed system.

Output Skills (Problem Solving):

S1. Given information about the particles involved in a collision or de-
cay use conservation of 4-momentum and the center of mass frame
to determine quantities (momenta, energies, velocities) related to
the process.

External Resources (Required):

1. W.Rindler, Essential Relativity, Van Nostrand (1977).
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RELATIVISTIC MECHANICS

by

C. P. Frahm

1. Introduction

This is the final unit on the special relativity part of this course. It
is concerned with the modification of Newton’s 2nd law required to bring
it into conformity with the special relativity postulate, with conservation
of energy and momentum and with applications of these principles to
various mechanics problems. It should be kept in mind that conservation
of energy and momentum is, in fact, more fundamental than is the 2nd
law since it applies to all closed physical systems whether made up of
particles or not.

2. Procedures

1. Read Rindler, section 5.1.

Newton’s 2nd law of motion can be written in several equivalent ways.

~f = m~a = m
d~u

dt
=

d~p

dt
, ~p = m~u

where ~f is the force acting on the (constant) mass m and resulting
in the acceleration ~a. It is desired to find the proper relativistic gen-
eralization of this law. There are many possible candidates and the
correct choice must ultimately be determined by its consistency with
observations. However, there are several constraints upon the form of
the relativistic expression that drastically limits the possibilities.

1) The relativistic expression should reduce to the classical expression
in the now relativistic limit (u¿ 1).

2) The relativistic expression should obey the special relativity postu-
late (i.e. have the same form in all inertial frames).

3) The 3-force (~f) transforms like 1/γu times the spatial part of a
4-vector.

An obvious way to obtain a 4-vector (as required by constraint 3)
analogous to the 3-momentum is to define the 4-momentum by

Pµ = m0U
µ
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where m is a scalar property of the particle - its rest mass. The com-
ponents of the 4-momentum can be written in the form

Pµ = m0γu(1, ~u) ≡ (P
◦, ~P )

Thus the spatial part of the 4-momentum is

~P = m0γu~u

which in the non-relativistic limit reduces to the classical 3-momentum
if we identify m with the Newtonian inertial mass

~P ⇒ m0~u = ~p

m0 = m (Newton)

Thus the spatial part of the 4-momentum seems to be a likely candidate
to use on the right hand side of the relativistic equation of motion. In
fact it is tempting to write down

~f =
d~P

dt

This clearly has the correct non-relativistic limit (constraint 1). How-
ever, it is not so clear that it satisfies constraint 2. To see that it does
consider the proper time τ of the particle

(dτ)2 = (dτ)2 − (dx)2 − (dy)2 − (dz)2

where (dt, dx, dy, dz) is a space-time displacement along the world line
of the particle. (dτ)2 is a Lorentz scalar by construction and can be
written in the form

(dτ)2 = (dt)2

[

1−

(

dx

dt

)2

−

(

dy

dt

)2

−

(

dz

dt

)2
]

= (dt)2(1− u2) =
(dt)2

γ2
u

Thus
d~P

dt
= (1/γu)

d~P

dτ

= (1/γu) times the spatial part of a 4-vector
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This observation along with the known transformation character of ~f
establishes that the expression

~f =
d~P

dt
, ~P = m0γu~u

satisfies the special relativity postulate (constraint 2). This is the
desired relativistic equation of motion. Its correctness has indeed been
substantiated by numerous comparisons with observations.

Notes:

1. If one uses for ~f an expression (such as Newton’s law of gravitation)
which comes from a theory which is not Lorentz covariant then,
of course, the relativistic equation of motion will not be invariant
under Lorentz transformations.

2. In the instantaneous rest frame of the particle ~u = 0 and hence
dτ = dt.

Thus dτ is the time interval recorded by a clock traveling with the
particle.

3. It is common practice to identify

m = m0γu

as the relativistic inertial mass and to write the relativistic momen-
tum in the form

~P = m~u

Although this maintains the symbolism of classical mechanics it is
of dubious value. It is undoubtedly simpler and more to the point to
refer to the rest mass of the particle as the mass of the particle (as is
universally done in high energy physics) and to write the relativistic
momentum as

~P = m0γu~u

¤ Exercise - Show that

PµPµ = (P
◦)2 − ~P 2 = m2

0

2. a. Although the relativistic equation of motion

~f =
d~P

dt
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is covariant (both sides have the same transformation rule) it is not
manifestly so. In fact, it would not be possible to transform this
equation alone from one inertial frame to another since the Lorentz
transformation requires the time - component of a 4-vector as well as
the spatial part. It is thus desired to obtain a manifestly covariant
form of the equation of motion. This is easily done by recalling that

γu ~f = γu
d~P

dt
=

d~P

dτ

Hence the manifestly covariant expression must be of the form

Fµ =
dPµ

dτ

with
Fµ = (F o, γu ~f) = Minkowski 4-force

The meaning of F o can be determined as follows.

F o =
dP o

dτ
= γu

dP o

dt

Now since
(P o)2 = m2

0 + ~P 2

differentiating gives

2P o dP
o

dt
= 2~P ·

d~P

dt

or
dP o

dt
=

~P

P o
·
d~P

dt
=

m0γu~u

m0γu
· ~f = ~u · ~f

Hence
F o = γu~u · ~f

so that
Fµ = γu(~u · ~f, ~f)

Note: The time component of the Minkowski force is just γu times
the power expended by the force ~f . Thus force and power (except
for a factor of γu ) are just different components of the same 4-
vector. In cases where the rest mass m0 is not constant (because of
thermal heating, for example) the time component of the 4-force is
γu times the total rate at which energy is supplied to the particle.
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b. ¤ Exercise - Use the Minkowski force to show that for a boost at
speed v in the +x-direction the 3-force transformation equations
are

f ′x =
fx − v(~u · ~f)

1− vux
, f ′y =

fy
γ(1− vux)

, etc.

Hint: See the Exercise on p. 9 of MISN-0-469.

¤Work problem 5 - 8 in Rindler,

c. ¤ Exercise - Differentiate the relativistic momentum

~P = m0γu~u

to show that the relativistic equation of motion can be written in
the form

~f = m0γu~a+m0γ
3
u(~u · ~a)~u

Note: The force ~f and the acceleration ~a are in general not parallel
as they are in Newtonian Mechanics.

¤ Exercise - Use the result of the previous exercise to show that

a) ~u · ~f = m0γ
3
u~u · ~a

Hint: See the exercise on p. 7 of MISN-0-466.

b) ~f = m0γu~a+ (~u · ~f)~u

¤ Exercise - Show that

a) ~f = m0γu~a if ~f is perpendicular to ~u

b) ~f = m0γu~a if ~f is parallel to ~u

Note: These are the only two cases when ~f and ~a are parallel.
Historically m0γu was called the transverse mass and m0γ

3
u the

longitudinal mass.

3. a. It was shown earlier that the power expended by a force ~f is equal
to the time derivative of the zeroth component of the 4-momentum

~u · ~f =
dP o

dt

One might suspect then that P o is the relativistic generalization
of the kinetic energy of the particle. However, expansion of P o in
powers of u yields

P o = m0γu = m0(1− u2)−1/2

= m0 + 1/2m0u
2 + 3/8m0u

4 + . . .
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Hence the non-relativistic limit of P o differs from the classical ki-
netic energy by the rest mass of the particle m0. The relativistic
kinetic energy is thus defined by

T = P o −m0 = 1/2m0u
2 + 3/8m0u

4 + . . .

For a single stable particlem0 is a constant and could be disregarded
since additive constants are not important in energy considerations.
However, for a system of particles the individual rest masses may
change so that it is necessary to interpret P o as the total energy.

P o = E = m0 + T

The total energy for a particle thus consists of two parts - the rest
mass energy and the kinetic energy.

¤ Exercise - Assume T , P , m0 and u have units of energy, momen-
tum, mass and velocity respectively. Insert c’s into the equation

E = m0 + T = m0 + 1/2m0u
2 + 3/8m0u

4 + . . .

so that

a) all terms have units of momentum

b) all terms have units of energy.

Note: The 4-momentum can be written in several equivalent forms

P ν = m0U
µ = m0γu(1, ~u) = (P

o, ~P ) = (E, ~P )

From these expressions several useful relations (which have been
used previously) can be derived

1) E = m0γu = m, ~P = m0γu~u = m~u

2) ~P/E = ~u

3) PµPµ = E2 − ~P 2 = m2
0 or E

2 = m2
0 +

~P 2

¤ Exercise - Determine the speeds of the projectiles in each of the
following accelerators. (Give the value of 1 − v. See p. 7 of MISN-
0-466).

a. Stanford Linear Accelerator (Stanford, Calif.)
electrons at 20GeV

b. Serpukhov (USSR)
protons at 70GeV
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c. National Accelerator Laboratory (Batavia, Ill.)
protons at 400GeV

Note: 1GeV = 109 eV, 1MeV = 106 eV

me = 0.51MeV

mbp = 940MeV

b. Conservation of energy and momentum can be approached in two
ways. The best way is to consider the homogeneity of space-time.
This homogeneity requires any theory to be invariant under space-
time translations which in turn leads to conservation of energy and
momentum for all closed systems. Unfortunately the details of this
analysis are beyond the scope of this course.

The alternate procedure is to apply Newton’s 2nd law to a closed
system of particles and show that energy and momentum must be
conserved. This procedure is less satisfying for a number of reasons
but it will be followed here. For a single particle the relativistic
form of Newton’s 2nd law is

~f =
d~P

dt

For a system of particles this expression can be summed over all
particles so that

∑

i

~fi =
d

dt

∑

i

~Pi

Now for a closed system the total force on the system is zero so that

d

dt

∑

i

~Pi = 0

which implies that the total momentum is a constant (i.e. momen-
tum is conserved).

Note: One glaring deficiency of this procedure is that it assumes
that the number and character of the particles does not change. On
the other hand it is known that the momentum of a closed system
is conserved even if the number of particles does change by way of
creation and/or annihilation processes.

The conservation of the spatial part of the 4-momentum in all
inertial systems implies the conservation of the temporal part as
well. Read the material in square brackets at the top of page 80 in
Rindler. Thus 4-momentum is conserved for a closed system.
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Rindler, as well as many other authors, follows a different approach
to relativistic dynamics. They begin assuming conservation of mo-
mentum and proceed to establish its consequences. There are some
very definite advantages to that procedure. However, I have chosen
to follow a path that more closely parallels the typical introductory
development of classical mechanics.

(Optional) Read Rindler, sections 5.3 - 5.6.

4. Read Rindler, section 5.7. The center of mass frame is sometimes called
the zero momentum frame. Although the latter name is undoubtedly
better the use of center of mass frame is so embedded in the literature
of physics that it is futile to try to avoid its usage.

Read Rindler, sections 5.8 and 5.9

¤ Exercise - Consider the production process wherein a particle of
mass m1 collides with a target particle of mass m2 (at rest in the lab)
to produce a collection of particles of masses m3, m4, . . .

1 + 2⇒ 3 + 4 + . . .

Use conservation of 4-momentum and the invariance of its square
(PµPµ) to show that the threshold energy (in the lab frame) for this
process is

E =
(m3 +m4 + . . .)2 − (m2

1 +m2
2)

2m2

¤ Exercise - Use the result of the preceding exercise to show that the
threshold energy for pair production by electron - electron collision

e− + e− ⇒ e− + e− + e− + e+

is seven times the rest mass energy of an electron. Note: the rest mass
of a positron (e+) is the same as that of an electron (e−).

¤ Exercise - A moving kaon (K meson) decays into two pions (π meson)

K+ ⇒ π+ + π0

If one of the pions is left at rest what was the energy of the kaon and
what is the energy of the other pion?

mK = 494MeV

mπ = 137MeV

12
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Read Rindler, sections 5.11 and 5.l2. Note that the 4-momentum of a
photon satisfies these relations

Pµ = (E, ~P ) = hν(1, n̂)

and
PµPµ = E2 − ~P 2 = 0

where h = Planck’s constant
ν = frequency = 1/λ λ = wavelength
n̂ = unit vector in the propagation direction

¤ Exercise - A photon rocket is to be accelerated from rest to a speed
such that γu = 10 by converting part of the mass of the rocket into
radiation (photons) which is directed out the rocket’s exhaust. What
fraction f of the mass must be so converted? (Assume 100% efficiency.)

Ans. f = 1 + γu −
√

γ2
u + 1 ≈ 0.95
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