
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-430

BASIC PROPERTIES OF WAVES

x

+A

-A

l

crest crest

trough

1

BASIC PROPERTIES OF WAVES

by

Fred Reif and Jill Larkin

CONTENTS

A. Waves on a String

B. Types of Waves

C. Sinusoidal Waves

D. Wavefronts

E. Intensity

F. Superposition

G. Summary

H. Problems

2



ID Sheet: MISN-0-430

Title: Basic Properties of Waves

Author: F. Reif and J. Larkin, Department of Physics, Univ. of Calif.,
Berkeley.

Version: 4/30/2002 Evaluation: Stage 0

Length: 1 hr; 64 pages

Input Skills:

1. State the principle of conservation of energy in terms of macro-
scopic and internal energy (MISN-0-416).

Output Skills (Knowledge):

K1. Vocabulary: wave, amplitude, sinusoidal wave, phase, period, fre-
quency, hertz, wavelength, wave front, intensity, interference.

K2. Describe at least three types of waves.

K3. State the frequency ranges of audible sound and visible light.

K4. Describe the wave fronts for spherical and plane waves.

K5. Relate intensity to amplitude.

K6. State the superposition principle for waves.

Output Skills (Problem Solving):

S1. Given its wave speed, use information about a wave at a given
position or time to determine the wave at some other position or
other time.

S2. Compare the intensities and amplitudes of two sinusoidal waves.

S3. Use the superposition principle to relate the values of two or more
individual waves to the value of the resultant wave.

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2002, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4



MISN-0-430

BASIC PROPERTIES OF WAVES

A. Waves on a String

B. Types of Waves

C. Sinusoidal Waves

D. Wavefronts

E. Intensity

F. Superposition

G. Summary

H. Problems

Abstract:
A wave is a disturbance that remains unchanged while it moves with some
constant velocity. There are water waves, waves on strings, sound waves,
earthquake waves, radio waves, light waves, radar waves, X-rays, etc.

In the present unit we shall discuss the most basic properties common
to all kinds of waves. We shall then use the next several units to explore
a wide variety of implications and practical applications.
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SECT.

A WAVES ON A STRING

To illustrate some of the general properties of waves, let us begin by
considering the particularly simple example of a wave traveling along a
string.

- Disturbance of a string
Figure A-1a shows an undisturbed string stretched between two

points so as to lie along a straight line parallel to the x̂ direction. Figure
A-1b shows a disturbance on this string. As indicated, this disturbance
consists of a displacement of a small region of the string along a direction
ŷ perpendicular to the string. This disturbance may be described by the
component, along the ŷ direction, of the displacement of the string at any
point.

- Wave Motion
The disturbance of Fig. A-1b can move with unchanged shape along

the string with some constant velocity ~V (as shown in Fig.A-1b, Fig. A-
1c, and Fig.A-1d, where this wave travels along the x̂ direction). Such
a moving disturbance is then called a “wave” moving (or “propagating”)
along the string.

Why does the disturbance move along the string? The basic reason
is that a displacement of any point of the string along the ŷ direction pro-
duces at a neighboring point of the string a force in this direction, hence
an acceleration in this direction, and thus (slightly later) a correspond-

(a)

(b)

(c)

(d)

time

t0

time

t + t0 D

time

t + 2 t0 D

ŷ

x̂

Dx

2 xD

Fig.A-1: Disturbance moving along
a stretched string: (a) Undisturbed
string; (b), (c), (d) a disturbance shown
at three successive times. This distur-
bance moves with a constant velocity ~V
= (∆x)/(∆t) along the x̂ direction.
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ing displacement in this direction. Thus, a disturbance at any point of
the string produces slightly later a similar disturbance at a neighboring
point of the string; in turn, this disturbance produces then slightly later a
similar disturbance at the next neighboring point; and so forth. The net
result is that the disturbance moves along the string by a succession of
locally generated effects (somewhat reminiscent of the successive collapse
of a pile of dominoes).

- Velocity of wave
The velocity of the disturbance moving along the string depends

on the properties of the string. Indeed, as shown in Problem H-1, this
velocity depends on the magnitude of the tension force in the string and
on the mass per unit length of the string. (To find this velocity, one need
only focus attention on any small part of the string. Then one can use
the equation of motion to analyze how the acceleration of this part of the
string is related to the net force resulting from the displacements of the
string.)

- Wave vs. particle motion
Note that the motion of the disturbance involves the successive

motions of different particles in the string and is very different from the
motion of any of these individual particles. Thus the disturbance moves
along the string with some constant velocity ~V along the string. But this
velocity is very different from the velocity ~v of any individual particle in
the string. Indeed, any such particle moves along a direction perpendicular
to the string and never moves very far from its original position (while
the disturbance itself moves along the entire string).

- Energy transport
Energy is associated with a moving wave. Indeed, since a distur-

bance produces at a neighboring point of the string a force and causes
this point to move, the disturbance can do work.

- Transmission of waves
A device used to produce a disturbance is called a “source.” (For

example, such a source might be simply a finger plucking the string to
produce a displacement at a particular point.) A device used to detect
the arrival of the disturbance at some point is called a “detector.” (For
example, such a detector might be simply a small piece of paper attached
at a particular point of the string so that the displacement of this point can
be easily observed.) A wave produced by the source and later arriving at
the detector can be used to transmit signals (and thus information) from
the source to the detector. Furthermore, work is done by the source to
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produce the wave. The wave arriving at the detector can then later do
work on the detector. Thus the wave can also be used to transmit energy
from the source to the detector.

Motion of a Wave (Cap. 1)

A-1
A displacement wave moves along a long stretched string with
a velocity of 6.0 × 103 cm/s along the x̂ direction. The graph

in Fig.A-2 illustrates, at the particular time t0 = 0.070 s, the wave (de-
scribed by the component w of the displacement of the string along the
ŷ direction perpendicular to x̂) at various positions (described by the po-
sition coordinate x along the x̂ direction). Draw the graph showing this
wave as a function of position along the string at the later time t = 0.072 s.
(Answer: 4) (Suggestion: [s-3])

A-2
As a different wave travels in the direction along the string de-
scribed for the wave in the preceding problem, the displacement

component w of the string, observed at the fixed position x0 = 20 cm,
varies with the time t in the manner indicated in the graph of Fig. A-3.
We are interested in finding the position of this wave at the particular
time t1 = 0.108 s. (a) Consider the part C of the wave (where w = 3.0 cm
at the time t = 0.106 s). Through what distance does this part of the
wave travel until the time t1 = 0.108 s? What then is the position of this
part of the wave at the time t1? (b) Similarly, consider the part B of the
wave (where w = 1.5 cm at the time t = 0.105 s). Through what distance
does this part of the wave travel until the time t1 = 0.108 s? What then is
the position of this part of the wave at the time t1? (c) Answer the same
questions for part A of the wave (where w = 0 at the time t = 0.104 s).
(d) To show the positions of the various parts of the wave at the time
t1, draw a graph of w versus x at the time t1. (Answer: 7) (Suggestion:
[s-5])
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A-3
Particle vs. wave velocity : (a) Use the information provided in
Fig. A-3 to find the velocity of a particle in the string (at the

position x0 = 20 cm) at the time t = 0.105 s. (b) Is the magnitude of the
velocity larger than, equal to, or smaller than the speed of the wave along
the string? (Answer: 2) (Suggestion: [s-2])

More practice for this Capability: [p-1], [p-2]
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SECT.

B TYPES OF WAVES

GENERAL PROPERTIES

There are many different kinds of waves, but all of them share the
following general properties illustrated in the previous example of a wave
on a string:

- Disturbance in a medium
(1) There is some kind of a medium (either a material medium or

a vacuum) which is originally undisturbed. A disturbance can then be
produced near some point in this medium. This disturbance can be de-
scribed either by a number, by a vector (such as a displacement), or even
by several vectors. If we specify any such vector by its numerical compo-
nents, any disturbance can then be described by one or more numbers,
each of which we shall simply denote by the letter w.

- Wave motion
(2) A disturbance near a particular point can produce slightly later

a similar disturbance at a neighboring point, which in turn can produce
slightly later a similar disturbance at a next neighboring point, and so
forth. Under these conditions the disturbance can move as a “wave.”

Def.
Wave: A disturbance which remains unchanged
(or nearly unchanged) while it moves through a
medium with some constant velocity.

(B-1)

- Wave velocity
(3) The velocity ~V with which a wave moves through a medium

depends on the properties of the medium and can be found from a de-
tailed analysis of the mechanism whereby a local disturbance produces a
disturbance at neighboring points. If the medium is “isotropic” (i.e., if its
properties are the same along every direction), the magnitude V of the

wave velocity is the same along any direction. [The velocity ~V of a wave
through a medium is quite different from the velocity ~v of any individual
particle in the medium.]

10
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Fig. B-1: Transverse displacement
wave in a spring.

- Energy transport
(4) A wave possesses energy since work must be done to produce a

wave and the wave can then, in turn, do work on some other system. A
moving wave can thus transport energy from one point to another.

- Wave transmission
(5) The preceding comments imply that a wave can be used to

transmit signals and energy from some source to some detector. Since
the wave moves with a finite velocity, there is a time delay between the
instant the wave is emitted by the source and the instant it arrives at the
detector.

- Differences between waves
(6) Although all waves share the preceding general characteristics,

they can differ quite widely because they may involve very different distur-
bances moving through very different media. Let us then mention some
of the various kinds of waves encountered most commonly.

ELASTIC WAVES

Consider a medium consisting of any material. The undisturbed state
of such a medium is one where the atoms in the material are at their
normal positions. A disturbance in the material can then be produced by
displacing the atoms near some point from their normal positions. Since
these atoms interact with neighboring atoms, these neighboring atoms
then also begin to move. Thus a disturbance, consisting of a displacement
of the atoms from their normal positions, moves through the material with
a velocity depending on the properties of the material. Such a disturbance,
called an “elastic” wave, consists thus of a displacement of the atoms from
their normal positions in a material (despite the interatomic forces tending
to restore these atoms to their normal positions).

11

MISN-0-430 B-3

(a)

(b)

time

t0

time

t0 + tD

Dx

Fig. B-2: Longitudinal displacement
wave in a spring.

- Transverse waves
As a specially simple example of an elastic wave, consider a

stretched spring or string (like that discussed in the preceding section).
One way to create a disturbance in such a spring is to displace the atoms
near some point along a direction perpendicular to the spring, as shown
in Fig. B-1a.

This disturbance then travels along the spring away from its original
position (i.e., away from its source) in both directions. For example,
Fig. B-1 illustrates the resulting displacement traveling to the right. The
resulting wave is called a “transverse” elastic wave since the disturbance
consists of a displacement in a direction perpendicular to (i.e., transverse
to) the velocity of the wave along the spring.

- Longitudinal waves
Another way of creating a disturbance in the preceding spring is

to displace the atoms near some point in the spring along a direction
parallel to the spring, as indicated in Fig. B-2a, so as to create near this
point either a compression or decompression of the spring (i.e., so as to
either decrease or increase the average separation of the atoms near this
point, compared to their normal separation). Such a disturbance can
again travel along the spring in both directions. The resulting wave is
called a “longitudinal” elastic wave since the disturbance now consists of
a displacement in a direction parallel to (or along) the velocity of the
wave along the spring.

- Waves in solids
The displacement associated with an elastic wave in a solid (e.g.,

the kind of wave produced in the earth by an earthquake) can have any
direction relative to the velocity of the wave.

Since this displacement can always be regarded as consisting of com-
ponent displacements parallel and perpendicular to the velocity, such a
wave can be viewed as consisting of a mixture of longitudinal and trans-
verse waves (which travel ordinarily with velocities of different magni-
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tuning fork earcompressed

region

Fig. B-3: Sound wave traveling
in air from a source (a tuning
fork) to a detector (an ear.)

tudes).

- Waves in fluids
The displacement associated with an elastic wave in a fluid is lon-

gitudinal, i.e., parallel to the velocity of the wave.*

* The reason is that the pressure forces responsible for the
interaction between neighboring layers of atoms in a fluid are
perpendicular to the surface between these layers (see text
section A of Unit 417). Hence a displacement parallel to this
surface produces no forces generating a neighboring distur-
bance and thus does not result in a traveling disturbance.
But a displacement perpendicular to this surface generates
a neighboring disturbance and thus results in a disturbance
traveling perpendicular to the surface, i.e., parallel to the dis-
placement.

Such a longitudinal wave is then associated with a corresponding local
compression or decompression traveling through the fluid (just as the
previously discussed longitudinal wave in a spring).

- Sound waves
A sound wave in air is a familiar example of such a longitudinal

wave in a gas. As illustrated in Fig. B-3, the source of such a sound wave is
some moving object (such as a vocal cord, a tuning fork, or the diaphragm
of a loudspeaker) which produces a displacement in the air immediately
adjacent to the moving object. After the wave has traveled some distance,
it may then produce a corresponding displacement of some other object
(such as an eardrum or a diaphragm in a microphone) which acts as a
detector registering the arrival of the wave.
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Fig. B-4: Electromagnetic wave con-
sisting of an electric field ~E and a
magnetic field ~B traveling through
space with a velocity ~V .

WAVES ON THE SURFACE OF A LIQUID

The undisturbed surface of a liquid near the surface of the earth is
horizontal. The surface of such a liquid can be disturbed by displacing
the atoms near some point of the liquid surface away from their normal
positions. Such a disturbance can then travel along the surface and gives
rise to a wave, such as the familiar waves observed on the surface of a
lake. (Such a wave is not an elastic wave since the forces tending to
restore the atoms to their normal positions along the horizontal surface
are the gravitational forces due to the earth, and not interatomic forces.)

ELECTROMAGNETIC WAVES

A vacuum, or a region filled with some material, can be considered as
an undisturbed medium (from an electromagnetic point of view) if there
are no electric or magnetic fields in it. An “electromagnetic wave” consists
then of electric and magnetic fields existing in some region and moving
through the medium with some constant velocity (see Fig. B-4.)

- Properties of e.m. waves
The main properties of electromagnetic waves have already been

discussed in text section C of Unit 429. Thus,the reason that an electro-
magnetic disturbance can move is that a time-varying electric field at a
given point produces at a neighboring point a magnetic field, and that a
time-varying magnetic field at the given point produces at the neighbor-
ing point an electric field. As a result, an electromagnetic disturbance at
a given point can produce a similar disturbance at a neighboring point,
and can thus move through the medium. Furthermore, it is shown in
text section C of Unit 429 that the electric field ~E and magnetic field ~B
associated with an electromagnetic wave are perpendicular to each other

14
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and perpendicular to the velocity ~V of the wave (see Fig. B-4.) The speed
V of an electromagnetic wave moving through a vacuum is a fundamen-
tal constant (commonly denoted by the letter c) having the approximate
value c = 3×108 m/s. The speed of electromagnetic waves in other media
is smaller than c.

As we shall discuss more fully in the next section, radio waves, radar
waves, light, and x-rays are all merely different kinds of electromagnetic
waves.

- Sources and detectors
The source of an electromagnetic wave is an accelerated charged

particle which produces in its vicinity changing electric and magnetic
fields. (For example, a radio-transmitting antenna consists basically of a
wire in which electrons are made to move back and forth so that they have
a large acceleration.) Similarly, the arrival of an electromagnetic wave can
be detected by the fact the fields of such a wave accelerate charged par-
ticles by producing forces on them. (For example, the receiving antenna
of a radio is merely a wire in which the electrons are accelerated by the
arrival of a radio wave.)

Knowing About Types of Waves

B-1
Longitudinal wave: Fig. B-5 shows a row of undisturbed atoms in
a solid, the separation between adjacent atoms being L. Suppose

now that, as a result of a longitudinal elastic wave traveling along x̂, the
atom 3 is displaced by an amount w = 0.001L along the x̂ direction
(as indicated in Fig. B-5b) while the other atoms remain in their normal
positions. (a) What then is the separation L′ between atoms 3 and 4?
Express your answer in terms of L. (b) Is the separation L′ larger than,
smaller than, or equal to the normal atomic separation L? (c) As a result
of this wave, is the density of the solid in the region between x3 and x5

then larger than, smaller than, or equal to the normal density of the solid?
(Answer: 5) (Suggestion: [s-1])

B-2
Transverse wave: Consider again Fig. B-5a showing a row of
undisturbed atoms in a solid. Suppose that, as a result of a

transverse elastic wave traveling along x̂, the atom 3 is displaced by an
amount w = 0.001L along the ŷ direction perpendicular to x̂ (as indicated
in Fig. B-5c) while the other atoms remain in their normal positions. An-
swer the same questions a, b, and c of the preceding problem for the case
of this transverse wave. (Answer: 1) (Suggestion: [s-4])
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B-3
Electromagnetic waves: (a) Can light waves travel through a
vacuum (such as interplanetary space)? (b) Can radio waves

travel through a vacuum? (c) If the answers to the preceding questions
are affirmative, what is the speed of light waves in a vacuum and the
speed of radio waves in a vacuum? (d) Can light waves and radio waves
also travel through a solid or liquid, such as glass or alcohol? (Answer:
6) (Suggestion: [s-7])

B-4
Sound waves: (a) Can a sound wave travel through a vacuum?
(b) Can a sound wave travel through a gas, such as air? (c) Can

it travel through a liquid, such as water? (d) Can it travel through a solid
such as steel? (Answer: 9) (Suggestion: [s-9])

B-5
Bell in a jar: An electric bell is suspended by two fine metal
wires inside an air-filled jar made of transparent glass so that the

bell can be seen from outside the jar. An electric current is now passed
through the bell. (a) Can the ringing of the bell then be heard from
outside the jar? Why? (b) Suppose that the air inside the jar is now
pumped out. Can the bell still be seen from outside the jar? Can the
ringing of the bell still be heard from outside the jar? Why? (Answer:
3)

B-6
Lightning and thunder: A lightning bolt produces a sound wave
(thunder) as a result of the expansion of the air heated in the

electric discharge constituting the lightning bolt. The speed of light in
air is nearly the same as that in vacuum, i.e., 3 × 108 m/s. The speed
of sound of air is approximately 340m/s. (a) How long a time ts does it

16
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take the sound wave produced by the lightning bolt to reach a point P
2.0 km away? (b) How long a time tL does it take the light produced by
the lightning bolt to reach this same point? Compare this time with the
time ts by computing the ratio tL/ts. (c) At the point P , what is the time
elapsed between the instant the lightning is seen and the instant thunder
is first heard? (Answer: 10)
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SECT.

C SINUSOIDAL WAVES

Waves which are repetitive, so that the same sequence of events is
merely repeated indefinitely, are simplest to study. The reason is that
such a wave has no beginning or end, so that one need not worry about
how such a wave starts or stops. Throughout the following units we shall,
in particular, deal almost entirely with waves which change repetitively
in a “sinusoidal” manner (i.e., in a manner similar to how a sine or co-
sine changes with angle). An understanding of such sinusoidal waves is
sufficient to understand all other kinds of waves. Indeed, as discussed in
Unit 433, any wave, no matter how complex, can always be expressed as
a sum of simple sinusoidal waves.

- Sinusoidal change
To specify more precisely what is meant by a sinusoidal change,

we recall the general definition of the cosine of an angle: cosφ is the
numerical component, along a direction x̂, of a unit vector û making an
angle φ relative to x̂. Values of cosφ for successively larger values of φ
can then be simply read off a diagram, such as that in Fig. C-1a, showing
the unit vector û rotating around so that its angle φ increases.*

* Similarly, sinφ is defined as the numerical component of û
along the ŷ direction in Fig. C-1a.

Note that the set of values assumed by cosφ repeats itself whenever û
has rotated by one complete revolution, i.e., whenever φ changes by 360◦

or 1 “cycle.” The graph in Fig. C-1b shows explicitly how cosφ varies
with φ.

Let us now examine in greater detail the properties of a sinusoidal
wave and introduce some important definitions used throughout the fol-
lowing units.

WAVE AT VARIOUS TIMES AT A FIXED POINT

Consider some fixed point P0. A sinusoidal wave at this point can
then be described by a disturbance w which varies with the time t in a
manner described by

w = A cosφ (C-1)

where A is some positive constant and φ depends on the time t. The

18
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Graph of cosφ versus φ.

constant A is called the “amplitude” of the wave and φ is called the
“phase angle” (or simply the “phase”) of the wave. A graph showing how
w varies with the time t is shown in Fig. C-2.

A

0

-A

t

At a Fixed Pointw

T

Df = one cycle

t0

Fig. C-2: Sinusoidal wave varying with time at a fixed point.
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- Amplitude
The wave w is seen to assume all values between a maximum value

+A and a minimum value −A. Thus the meaning of the amplitude A is
specified by this definition:

Def. Amplitude: The maximum magnitude of a sinu-
soidal wave.

(C-2)

- Phase
The meaning of the “phase” of a wave is simply this:

Def. Phase: The quantity φ specifying the value of a
sinusoidal wave varying like cosφ.

(C-3)

In particular, such a wave repeats itself whenever its phase φ changes by
1 cycle (or 360◦).

- Period
The set of values assumed by the wave w is seen to repeat itself

whenever the time changes by some amount T (corresponding to the phase
of the wave changing by 1 cycle). The time T is called the “period” of the
wave in accordance with this definition:

Def.
Period: The period T of a sinusoidal wave is the
time elapsed between successive repetitions of the
same set of values of the wave at a fixed position.

(C-4)

For example, the period T is the time between two successive maxima or
two successive minima of the wave (as indicated in Fig. C-2).

- Time variation
The period T is a very useful quantity for describing how the wave

at a fixed point repeats itself in the course of time. Thus, as illustrated in
Fig. C-2, if the time changes by T (so that the phase of the wave changed
by 1 cycle), the wave assumes the same value as before. But if the time
changes by (1/2)T (so the phase of the wave changes by (1/2) cycle), the
wave assumes a value of the same magnitude but opposite sign.

For example, consider some time t0 when the wave w assumes its
maximum value w = A (as indicated in Fig. C-2). At a time (1/4)T after
t0, the value of the wave is then w = 0. At a time (1/2)T after t0, the
value of the wave is then w = −A. At a time (3/4)T after t0, the value
of the wave is then w = 0. And a time T after t0, the value of the wave
is again equal to its original maximum value w = A.

20
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- Frequency
Instead of using the period T to describe how a sinusoidal wave

repeats itself in the course of time, one can equally well use the “fre-
quency” ν, defined this way:

Def.
Frequency: The frequency of a sinusoidal wave
is the number of repetitions per unit time of the
same set of values of the wave.

(C-5)

The frequency ν is simply related to the period T . Indeed, the number of
repetitions occurring during some long time t is t/T (i.e., it is simply the
time t divided by the time T required for a single repetition). To find the
number of repetitions per unit time (i.e., divided by the corresponding
time), one need then only divide (t/T ) by t, thus obtaining the result
1/T . Hence the frequency ν is simply related to the period so that

ν =
1

T
(C-6)

- Unit of frequency
The relation (C-6) implies that the SI unit of frequency is

unit of ν =
1

second
= hertz (C-7)

where the unit “hertz” (abbreviated as “Hz”) is simply a convenient ab-
breviation for (second)−1. [This unit is named in honor of Heinrich R.
Hertz (1857-1894), the German physicist who first demonstrated exper-
imentally the existence of radio waves.] For example, if the period of a
wave is 0.1 second, Eq. (C-6) implies that the frequency of this wave is
10 hertz (corresponding to 10 repetitions per second).

WAVE AT VARIOUS POINTS AT A FIXED TIME

- Sinusoidal spatial variation
Consider a wave which travels with a constant speed V along some

direction and let x be the component of the position vector of any point
along this direction. If the wave at some fixed point varies sinusoidally
with time and then travels from this point with the speed 6V, the re-
sulting wave produced at any fixed time must then also vary sinusoidally
with position. To show why this is so, we illustrate in Fig. C-3 how the
wave varies with position at various times differing by T/4 (where T is
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Fig. C-3: Sinusoidal wave varying with position, specified by
x, at successive fixed time.

the period of the wave). At the point specified by x0, the wave varies
sinusoidally with the time t as indicated in Fig. C-2 and correspondingly
indicated by the wave at x0 in the successive graphs of Fig. C-3. Because
the wave in Fig. C-3 moves to the right with a speed V , any value of the
wave appearing x0 (or any other point) in one graph appear in the next
graph, at a time later by T/4, displaced to the right by the same amount
V (T/4). This fact has been used to construct the successive graphs in
Fig. C-3. In particular, we see that, at any fixed time, the wave varies
sinusoidally with the position specified by x.

- Wavelength
At any fixed time, the wave repeats itself (i.e., its phase changes by

one cycle) when the distance along the wave changes by some amount λ,
called the “wavelength.”
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Def.

Wavelength: The wavelength λ of a sinusoidal
wave is the distance, along the velocity of the
wave, between successive repetitions of the same
set of values of the wave at a fixed time.

(C-8)

For example, the wavelength is the distance between two successive
maxima or two successive minima of the wave (as indicated in Fig. C-3).

RELATION BETWEEN WAVELENGTH, FREQUENCY,
AND SPEED

As is seen from Fig. C-3 during a time equal to a period T , any
disturbance (such as the maximum M2 of the wave) moves by a distance
equal to a wavelength λ. Thus the speed V of the wave is simply equal
to the distance λ divided by the time T . Hence:

V =
λ

T
(C-9)

or

V = λν (C-10)

where the last relation is obtained by using Eq. (C-6) to express (1/T )
in terms of the frequency ν. According to Eq. (C-10), the product of the
wavelength λ multiplied by the frequency ν is thus always equal to the
speed V of the wave.

APPLICATIONS

The observable effects of a sinusoidal wave depend crucially on its
frequency or wavelength. We mention several examples.

- Detectors
A detector (such as an ear or an eye) is located at some fixed

point of space and thus responds to how rapidly a wave changes at this
point, i.e., it responds to the frequency of the wave. For example, the
ear (and associated nervous system) perceives sound waves of different
frequencies as having different “pitch.” Similarly, the eye (and associated
nervous system) responds to electromagnetic waves of different frequencies
as having different “color.”
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- Sound waves
The human ear can only detect sound waves in the approximate

frequency range between 20Hz and 20,000Hz. In this range, sound waves
of higher frequency are perceived as having higher pitch. Sound waves
with frequencies smaller than about 20Hz are called “infrasonic” waves,
while those with frequencies larger than about 20,000Hz are called “ul-
trasonic” waves. Such waves are not audible to the human ear, but can
be detected by various non-physiological devices. In particular, ultrasonic
waves have many practical applications in medicine and in other fields.

- Light waves
The human eye can only detect electromagnetic waves in the ap-

proximate frequency range between 4 × 1014 Hz and 7 × 1014 Hz. Waves
of increasingly larger frequency in this range are perceived by the eye
as having different colors ranging from red, to yellow, to green, to blue,
and to violet (i.e., ranging through colors of the rainbow). Electromag-
netic waves of frequencies somewhat below those detectable by the eye are
called “infrared” waves, while electromagnetic waves of frequencies some-
what above those detectable by the eye are called “ultraviolet” waves.
Such waves, as well as all other electromagnetic waves not detectable by
the eye, can be detected by various non-physiological devices.

- Electromagnetic waves
The many different kinds of electromagnetic waves differ only in

frequency (or thus also in wavelength), but have correspondingly widely
different observable properties. Figure C-4 illustrates the various names
give to electromagnetic waves in different frequency ranges. For exam-
ple, AM radio waves have frequencies near 106 Hz, FM radio waves have
frequencies near 108 Hz, radar waves have frequencies near 1010 Hz, light
waves have frequencies near 5×1014 Hz, and x-rays have frequencies near
1017 Hz or above.

Understanding (ν = 1/T ) and (V = λν) (Cap. 2)

C-1
Properties of sinusoidal waves: At a particular point, the compo-
nent Ey of the electric field (along the ŷ direction) of a sinusoidal

AM radio wave (traveling along the x̂ direction perpendicular to ŷ) varies
with the time in the manner indicated in Fig. C-5. At the time t0, the field
Ey assumes its minimum value of -10−4 volt/meter. The time elapsed be-
tween t0 and the time when Ey assumes its next maximum value is 0.50µs
(where 1µs = 1microsecond = 10−6 second). (a) What is the period of
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Fig. C-4: Frequencies and corre-
sponding wavelengths (in vacuum)
of various kinds of electromagnetic
waves.

this radio wave? (b) What is the frequency of this wave? (c) What is
the amplitude of this wave? (d) What is the value of Ey 0.75µs after the
time t0 and 1.50 µs after the time t0? (e) What is the wavelength of this
radio wave? (f) At a fixed instant of time, what is the distance along the
x̂ direction between a point where Ey is maximum and the next point
where Ey is minimum? (Answer: 12) (Suggestion: [s-6])

C-2
Sound waves in air: The sound wave producing the tone having
the pitch of a violin “A-string” has a frequency of 440Hz. (a)

What is the period of this sound wave? (b) What is the wavelength of
this sound wave in air and in water? (The speed of a sound wave is
340m/s in air and 1500m/s in water.) (c) Is the perceived pitch of this
sound wave in water higher, lower, or the same as in air? (d) The lowest
and highest frequencies of audible sound are 20Hz and 20×103 Hz. What

Eg

-10 V/m
-4

t

0.5 sm
Fig. C-5.
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are the corresponding smallest and largest wavelengths of audible sound
waves in air? (e) Is the smallest wavelength of audible sound larger than,
about equal to, or smaller than the size of an atom (10−10 m)? the size of
a bacterium (about 10−6 m)? the size of the human eardrum? (Answer:
8)

C-3
Light waves: Yellow light (of the kind emitted by a sodium lamp)
has a wavelength of approximately 5.9 × 10−7 m in vacuum. (a)

What is the frequency of such a light wave? (b) The frequency of a wave
(i.e., the number of repetitions per second) is the same at any point,
irrespective of the medium in which this point may be located. Thus
the frequency of the yellow light passing through glass is the same as in
vacuum. If the speed of light in a glass is 2.0 × 108 m/s, what is the
wavelength of this light in the glass? (c) Is the wavelength of visible light
(such as yellow light just discussed) larger than, about equal to, or smaller
than the size of an atom? the size of a bacterium? the size of the pupil
of the human eye? (Answer: 13)

C-4
Observations with sound waves: As we shall discuss later, waves
can only be used to make detailed observations of an object if

the wavelength is smaller than the object. Thus visible light, having a
wavelength in vacuum of about 5 × 10−7 m, can be used to make obser-
vations of bacteria (which are about 10−6 m in size). (a) Suppose that
one wants to use sound waves, having in water the same wavelength of
5 × 10−7 m, to make similar observations of bacteria. What would have
to be the frequency of these sound waves if the speed of sound in water
is 1500m/s? (b) Is the frequency of these waves larger than, about equal
to, or smaller than the frequency of audible sound waves? (Answer: 11)

More practice for this Capability: [p-3], [p-4], [p-5]
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SECT.

D WAVEFRONTS

Elastic waves along a stretched string or spring travel simply along
a line. But most waves (such as sound waves or electromagnetic waves)
are more complex because they travel through three-dimensional space.
Hence we should like to introduce a simple way to describe and visualize
such waves.

- Def. of wavefront
To achieve our aim, we can focus our attention on any “wavefront”

of a sinusoidal wave:

Def.
Wavefront: A wavefront is a set of adjacent
points along which a wave at a specified time, has
everywhere the same value.

(D-1)

Most conveniently, we may consider a set of adjacent points where the
wave has its maximum value. (Such a wavefront can be indicated on a
diagram by a solid line.) Similarly, we may consider a set of adjacent
points where the wave has its minimum value. (Such a wavefront can be
indicated on a diagram by a dashed line.)

- Waves on a Surface
As a simplest example of wavefronts, consider the familiar case

of waves on the horizontal surface of water. Suppose that a sinusoidal
wave is produced by a source (such as a finger moving up and down
through the surface at some point). Then sinusoidal waves move outward
from this source, traveling along the surface of the water with the same
constant speed V in all directions. At any time t0, the wavefronts are then
concentric circles on the surface of the water, as illustrated in Fig.D-1a.
Here the solid lines indicate the “crests” of the waves (i.e., wavefronts
along which the displacement of the water above the undisturbed surface
is maximum.) Similarly, the dashed lines indicate the “troughs” of the
wave (i.e., wavefronts along which the displacement of the water above
the undisturbed surface is minimum, so as to be of maximum magnitude
but negative).

The distance between neighboring wavefronts corresponding to maxima
of the wave (or between neighboring wavefronts corresponding to minima
of the wave) is just equal to the wavelength λ of the wave.
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Fig.D-1: Wavefronts of a wave emanating from a small
source. The velocity ~V of the waves is everywhere outward,
perpendicular to the wavefronts.

- Motion of wavefronts
After a time T/2, where T is the period, each of the wavefronts

in Fig.D-1a has moved outward by a distance λ/2. The results are the
wavefronts indicated in Fig.D-1b. This figure shows properly that, after
the time T/2, the wave at any point reverses its sign. Thus, at every
point where the wave is maximum in Fig.D-1a, the wave is minimum in
Fig.D-1b, and vice versa.

WAVES IN SPACE

- Motion of wavefronts
Consider a sinusoidal wave which travels in space away from some

small source (e.g., a sound wave traveling in air away from a tuning fork).
If the speed of the wave is the same in all directions, the wavefronts at
any time t0 are then simply concentric spherical surfaces, as indicated in
Fig.D-1 (if this figure is interpreted as a two-dimensional representation
of a three-dimensional situation).*

* For example, in the case of a sound wave, the wavefronts
indicated by solid lines may represent spherical surfaces where
the compression in the air is maximum, while the wavefronts
indicated by dashed lines may represent spherical surfaces
where the compression is minimum.

Such a wave, whose wavefronts are spherical surfaces, is called a “spherical
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V
`

max min max min max min max

Fig.D-2: Wavefronts of a plane wave.
(Each line represents a plane perpendic-
ular to the paper.)

wave.”

In the course of time, the wavefronts in Fig.D-1a move outward. For
example, after a time T/2, the wavefronts have moved outward a distance
λ/2, as shown in Fig.D-1b.

- Plane wave
A very simple kind of a wave in space is a “plane wave,” i.e., a

wave whose wavefronts are planes, as shown in Fig.D-2. (For example,
a plane sound wave might be generated in the air adjacent to a large
flat plate vibrating back and forth.) Note that, in a limited region of
space (such as the gray region indicated in Fig.D-1a) a spherical wave
approximates a plane wave since a spherical wavefront is nearly flat in a
region of sufficiently small lateral extent.

Knowing About Wave Fronts

D-1
A sound wave emanates from a tuning fork and travels in air
where the speed of sound is 340m/s. Figure D-3 indicates the

spherical wavefronts of this wave at a particular time t0.

timet0
C

A

B

Fig.D-3.
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Here the solid lines indicate locations where the excess den-
sity of the air (i.e., the actual density minus the normal density) is

maximum, while the dashed lines indicate the locations where the excess
density is minimum. The distance between a solid line and an adjacent
dashed line is 0.34m. (a) What is the wavelength of this wave? (b) What
is the frequency of this wave? (c) What is the period of this wave? (d)
At the time t0, the excess density at the point A is ρ0. What then is the
excess density at the point B in Fig.D-3? (e) At the time t0, is the excess
density at the point C maximum or minimum? (f) At a time 1.0× 10−3

second after the time t0, what is the excess density at the point B? Is the
excess density at the point C then maximum or minimum? (g) At a time
1.5×10−3 second after the time t0, what is the excess density at the point
B? What is the excess density at the point C? (Answer: 15)
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SECT.

E INTENSITY

The work done by a source in producing a wave is converted into
energy transported by the wave moving away from the source. The wave
arriving at some detector can then give up its energy to do work on the
detector.

- Def. of intensity
To describe the energy transported by a sinusoidal wave moving

through space, consider at any point P a small surface, of area A,
perpendicular to the velocity of the wave at this point. Then a certain
amount of energy per unit time (or power P) is transported through this
area as a result of the wave moving through this area. This power P
fluctuates in time, since the wave varies sinusoidally with time, but has
some non-zero average value P̄ if the amplitude of the wave is non-zero.*

* The average value of a sinusoidal wave is zero since the wave
varies in time so as to be as often positive as negative. Cor-
respondingly, the average values of both the sinusoidal force,
and of the sinusoidal displacement produced by the wave, are
also zero. But, whenever the force changes its direction, the
displacement also changes its direction. Hence the work done
by the wave has always the same sign. Therefore the average
value of the work, and thus also that of the power, is not zero.

The ratio P̄/A is independent of the area A of the surface (if this
surface is small enough). This ratio is called the “intensity” I of the
wave.

Def. Intensity: I =
P̄
A

(E-1)

In other words, the intensity I of a wave at a point P is the average
power, per unit area, passing through a small surface located at P and
perpendicular to the velocity of the wave.

- Examples
If light arriving at an eye has larger intensity, it is perceived as

having greater “brightness.” Similarly, if sound arriving at an ear has
larger intensity, it is perceived as having greater “loudness.” Sound with
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an intensity of 10−12 watt/meter2 is barely audible to the human ear,
while sound with an intensity larger than 1watt/meter2 is perceived as
painfully loud.

- Measurement of I
To measure the intensity I at some point P , one can place at this

point a detector, of small area A, which absorbs all of the energy of the
wave incident on the surface of the detector (so that none of the wave is
reflected back from the detector, nor transmitted into the region behind
the detector). The average power of the wave arriving at the detector is
then just equal to the average work per unit time done by the wave on
the particles in the detector.

- Intensity and amplitude
How does the intensity of a sinusoidal wave depend on its am-

plitude? Suppose that we are interested in the intensity I of the wave
at some point P where the sinusoidal wave has an amplitude A. This
intensity I is then proportional to the average work per unit time done on
the particles in a detector placed at P . Suppose now that the amplitude
A of the wave were 3 times as large. At any instant, the magnitude of
the force produced by the wave on a particle in the detector would then
also be 3 times as large. Similarly, the magnitude of the displacement
produced by the wave on this particle during some short time would
also be 3 times as large. During any short time the work done (obtained
by multiplying the magnitude of the force by the component of the
displacement along the force) would then be 3 × 3 = 9 times as large.
Thus we see that the intensity I is proportional to the square of the
amplitude, i.e., we can write

I = γA2 (E-2)

where γ is a constant which does not depend on A (although it may
depend on the properties of the medium and on the frequency of the
wave).*

* If a wave is described by several numbers w (e.g., by the
several components of a vector), its intensity is given by a sum
of terms like Eq. (E-2), each involving the square of a different
amplitude. We shall ignore such complications throughout
the following unit.
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INTENSITY AND CONSERVATION OF ENERGY

- Energy dissipation
As a wave travels through a material medium, some of the en-

ergy associated with the wave may gradually be “dissipated,” i.e., it may
gradually be transformed into increased random internal energy of the
medium (so that the temperature of the medium increases). In many
cases, such energy dissipation is negligibly small. In particular, when
electromagnetic waves travel through a vacuum, the energy associated
with the wave cannot be given to any particles since none are present.
Hence an electromagnetic wave traveling in a vacuum retains its energy,
without any dissipation.

- Spherical wave
Consider a small source emitting a sinusoidal spherical wave which

travels outward in all directions without any dissipation of energy (see
Fig.D-1.) By conservation of energy, the average power Ps emitted by
the source must then be equal to the average power passing outward
through any spherical surface centered at the source. This average power,
passing uniformly through all parts of such a surface of radius R (or
corresponding area 4πR2) then produces at any point of this surface an
intensity I which is, by Def. (E-1), equal to

I =
P̄s

4πR2
(E-3)

Thus the intensity I is smaller at larger distances from the source (since
the same average power in the wave is then distributed over a larger
area). In particular, I decreases so that it is inversely proportional to the
square of the distance. For example, at a distance 3 times as far from
the source, the intensity of the wave is only 1/32 = 1/9 as large.*

* Since I = γA2 by Eq. (E-2), the amplitude A of the wave
must then decrease proportionately to

√
I, i.e., proportion-

ately to 1/R.

If some of the energy of the wave is also dissipated to the medium
as the wave travels through it, the intensity of the wave decreases with
increasing distance even more rapidly than indicated by Eq. (E-3).

- Plane wave
Consider the special case of a plane wave traveling through a

medium with negligible dissipation of energy. (See Fig.D-2.) By con-
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servation of energy, the average power passing through any such plane
must then be the same. But since every such plane has the same area,
the intensity at every such plane must also be the same. Hence the in-
tensity (and correspondingly also the amplitude) of a plane wave remains
constant as the wave travels through the medium.

Of course, if there is some dissipation of energy, the intensity (and
correspondingly also the amplitude) of the plane wave gradually decreases
as the wave travels through the medium.

E-1
Intensity and energy from the sun: The intensity of electromag-
netic radiation (averaged over day and night) reaching the earth

from the sun is 1.34×103 watt/meter2. (a) What then is the average power
delivered by the sun to New York City which has an area of 945 km2? (b)
What then is the average solar energy delivered to New York City during
one year? (1 year = 3.15× 107 second) (c) How much larger is this energy
than the energy of about 2.5× 1018 joule consumed by the population of
New York City during one year? (Answer: 17)

Understanding (I = P̄s/4πR
2)

E-2
Power emitted by the sun: The intensity of electromagnetic
waves arriving at the earth from the sun is 1.34 × 103 km2. The

average distance of the earth from the sun is 1.49× 108 km. On the basis
of this information, what is the average power of electromagnetic waves
emitted by the sun? (Answer: 14)

E-3
Power from a spacecraft: The Viking spacecraft, sent in 1975
to explore the possibility of life on Mars, sent back information

to earth by radio waves emitted by a 16watt radio transmitter. If these
waves are sent out uniformly in all directions and if the distance between
the earth and Mars at the time of the exploration is 3×108 km, what is the
average power of the radio waves arriving at the large receiving antenna
in Goldstone, California? (This antenna has the shape of a circular disk
with a diameter of 64m or corresponding area of 3.2 × 103 m2)? (b) is
the power arriving at this antenna large enough to be easily detected?
(The Goldstone antenna can detect powers as small as 2 × 10−21 watt.)
(Answer: 19) (Suggestion: [s-10])

E-4
Variation of intensity with distance: Sound emanates uniformly
in all directions from a large bell. At a distance of 3m from the

bell, the intensity of the sound is 1 km2 and is thus painfully loud. How
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far would one have to be from this bell so that the intensity is 10−4 km2?
(Neglect dissipation of energy in the air.) (Answer: 16) (Suggestion:
[s-13])

More practice for this Capability: [p-6]

Comparing Intensities and Amplitudes

E-5
Transmitted power and electric field: The current in the trans-
mitting antenna of a radio station is increased so that the electric

field of the radio wave emitted by the antenna is everywhere 3 times as
large as before. (a) How much larger than before is the intensity of the
radio wave at any point? (b) How much larger than before is the total
power emitted by the radio station? (Answer: 23)

E-6
Excess densities of sound waves: The intensity of a painfully
loud sound is 1 km2, while the intensity of a barely audible sound

is 10−12 km2. By what factor is the amplitude of the painfully loud sound
larger than the amplitude for the barely audible sound? (Answer: 21)
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SECT.

F SUPERPOSITION

Suppose that a wave emitted by one source produces at some point
a disturbance w1, and that a wave emitted by another source produces
at this point a disturbance w2. What then is the resulting disturbance w
produced at this point by both waves present simultaneously?

In the case of an electromagnetic wave, the disturbance traveling as
a wave is just an electric or magnetic field. By the superposition principle
for fields, the resultant field produced by both waves is then simply the
sum of the individual fields produced by these waves. In the case of
elastic waves, or waves on the surface of a liquid, the disturbance traveling
as a wave is a displacement. The resultant displacement produced by
both waves is then again simply the sum of the individual displacements
produced by these waves (as long as these displacements are not too
large). Similar statements hold then for any numerical component of
these disturbances. Thus we conclude that:

w = w1 + w2 . (F-1)

This conclusion can be stated in words:

Superposition principle for waves: At any point, the
wave resulting from several waves presented simultane-
ously is equal to the sum of the individual waves.

(F-2)

IMPLICATIONS FOR INTENSITY

Up to now we have focused attention on the moving disturbances,
i.e., on the waves themselves. Let us now consider the energies associated
with these disturbances, i.e., the intensities of the waves. Is it true that
the intensity I resulting from the simultaneous presence of two waves is
equal to the sums of the intensities I1 and I2 of the individual waves?

- Resultant intensities
The answer to this question is definitely no. As a particular ex-

ample, consider at some point P two sinusoidal waves w1 and w2 of the
same frequency, each wave having the same amplitude A1 and thus cor-
respondingly the same intensity I1 = γA2

1. Suppose that both of these
waves have the same phase (so that the maxima of both waves occur at
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Fig. F-1: (a), (b) Two waves
with the same amplitude and
the same phase. (c) Resultant
wave equal to the sum of these
waves.

the same time, as indicated in Fig. F-1.) At any instant, the waves have
then the same value w2 = w1. By the superposition principle Eq. (F-1),
the value of the resultant wave is then at any instant w = 2w1, so that the
amplitude of the resulting wave is correspondingly A = 2A1 (see Fig. F-
1c.) Hence the intensity I of the resultant wave is:

I = γA2 = γ(2A1)
2 = 4γA2

1 = 4I1 (F-3)

which is twice as large as the sum 2I1 of the intensities I1 of each of the
two individual waves.

As another even more striking example, consider the same two waves
as before, but suppose that there is a phase difference of one-half cycle
between the waves (so that the maximum of one wave occurs at the same
time as the minimum of the other wave, as indicated in Fig. F-2.) At
any instant, the waves have then opposite values so that w2 = −w1. By
the superposition principle (see Fig. F-1), the resultant wave has then
at any instant a value equal to w = 0. In other words, the two waves
cancel each other completely so as to give rise to a resultant wave with
amplitude A = 0 and corresponding intensity I = 0. (See Fig. F-2c.) This
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Fig. F-2: (a), (b) Two waves
with the same amplitude and
with phases differing by one-
half cycle. (c) Resultant wave
equal to the sum of these waves.

zero intensity of the resultant wave is obviously not only smaller than the
sum 2 I1 of the intensities of the individual waves, but smaller than the
intensity I1 of either one of these individual waves!

- Interference
Thus the superposition principle Eq. (F-1) or Rule (F-2) for waves

does not imply a corresponding superposition principle for the intensities
of these waves. Indeed, the intensity I of the resultant wave is ordinarily
different from the sum of the intensities of the individual waves, i.e.,

I 6= I1 + I2 (F-4)

Thus one can ordinarily expect to observe “interference” between two
waves, in this sense:

Def.

Interference: A situation where the resultant in-
tensity of several waves present simultaneously is
different from the sum of the intensities of the in-
dividual waves.

(F-5)

In particular, the interference is said to be “constructive” if the resultant
intensity I is larger than the sum of the individual intensities (as in the
case of Fig. F-1). Conversely, the interference is said to be “destructive”
if the resultant intensity I is smaller than the sum of the individual
intensities (as in the case of Fig. F-2).

38



MISN-0-430 F-4

The superposition principle for waves, and the resulting possibility
of interference between waves, is the most striking property of all waves.
This property leads to remarkable conclusions of the greatest importance.
Indeed, we shall spend the next several units discussing the phenomenon
of interference and some of its many practical implications.

Superposition Principle for Waves

F-1
Two sinusoidal waves have the same frequency, but the amplitude
A1 of the first wave is 3 times as large as the amplitude of the

second wave, so that A1 = 3A2. To compare the intensities of these waves,
express the intensity I1 of the first wave in terms of the intensity I2 of
the second wave. (Answer: 24) (Suggestion: [s-15])

F-2
Waves in phase: Suppose that the two waves described in the
preceding problem are present simultaneously at the same point

and have the same phase. (The relationship between the phases of the
waves is then the same as that illustrated in Fig. F-1.) (a) Express the
amplitude A of the resultant wave in terms of the amplitude A2 of the
second wave. (b) Express the intensity I of the resultant wave in terms of
the intensity I2 of the second wave. (c) Is the intensity I of the resultant
wave equal to, larger than, or smaller than the sum (I1 + I2) if the inten-
sities of the two individual waves? To make the comparison quantitative,
find the ratio I/(I1 + I2). (Answer: 20) (Suggestion: [s-12])

F-3
Waves 1/2 cycle out of phase: Suppose now that the two waves
described in Problem F-1 are present simultaneously at the same

point, but differ in phase by 1/2 cycle. (The relationship between the
phases of the waves is then the same as that illustrated in Fig. F-2.) For
this case, answer the same questions a, b, and c of the preceding Problem
F-2. (Answer: 18)
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SECT.

G SUMMARY

DEFINITIONS

wave; Def. (B-1)

amplitude; Def. (C-2)

phase; Def. (C-3)

period; Def. (C-4)

frequency; Def. (C-5)

hertz; Eq. (C-7)

wavelength; Def. (C-8)

wavefront; Def. (D-1)

intensity; Def. (E-1)

interference; Def. (F-5)

IMPORTANT RESULTS

Relation between frequency and period: Eq. (C-6)

ν = 1/T .

Relation between speed, wavelength and frequency: Eq. (C-9), Eq. (C-10)

V = λ/T = λν

Relation between intensity and amplitude: Eq. (E-2)

I = γA2

(where γ is some constant).

Intensity of spherical wave at distance R from a source: Eq. (E-3)

I = P̄s/4πR
2

(where P̄s is the average power emitted by a source).

Superposition principle for waves: Eq. (F-1), Rule (F-2)

w = w1 + w2

USEFUL KNOWLEDGE

Types of waves (elastic, liquid surface, electromagnetic.) (Sec. B)

Properties of sinusoidal waves. (Sec. C)

Frequencies of audible sound and visible light. (Sec. C)

Wave fronts for spherical and plane waves. (Sec.D)

40



MISN-0-430 G-2

NEW CAPABILITIES

(1) Knowing the velocity of a wave, use information about the wave at a
given position or a given time to find the wave at some other position
or other time. (Sects. A, D; [p-1], [p-2])

(2) Understand the relations ν = 1/T and V = λ/T = λν relating the
wavelength λ, frequency ν (or period T ), and speed V of a sinusoidal
wave. (Sec. C; [p-3], [p-4], [p-5])

(3) Understand the relation I = P̄s/4πR
2 relating the intensity I of a

spherical wave at a distance R from a source emitting an average
power P̄s. (Sec. E; [p-6])

(4) Compare the intensities and amplitudes of two sinusoidal waves.
(Sec. E)

(5) Use the superposition principle to relate the values of two or more
individual waves to the value of the resultant wave. (Sec. F)

G-1
Pitch and wavelength: The pitch of a first tone is perceived
to be an “octave” higher than the pitch of a second tone if the

frequency of the sound wave producing the first tone is twice as large as
the frequency of the sound wave producing the second tone. (a) What
then is the relationship between the wavelength λ1 of the first sound wave
compared to the wavelength λ2 of the second sound wave? (b) Does the
answer to the preceding question depend on whether the sound waves are
traveling in air, water, or any other medium? (Answer: 26)

G-2
Wavelengths of radio waves: The radio waves sent out by
AM stations have frequencies near 1MHz, while the radio waves

sent out by FM stations have frequencies near 100MHz. (1MHz =
1megahertz = 106 Hz.) (a) What then are the typical wavelengths of
AM and FM radio waves? (b) Are these wavelengths larger than, smaller
than, or about equal to the size of a transistor radio? (Answer: 22)

G-3
Properties of sinusoidal waves: Two waves of the same frequency
and amplitude travel in the same direction. How do these waves

differ if the difference between the phases of these waves is (a) (1/2) cycle?
(b) 1 cycle? (c) (3/2) cycle? (Answer: 28)
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SECT.

H PROBLEMS

H-1
Speed of waves along a string: The speed V of waves travel-
ing along a stretched string depends on the magnitude Ft of the

tension force in the string and on the mass per unit length m′ of the
string. (a) What are the SI units of the quantities V , Ft, and m′? (b)
How must V be related to the other two quantities so that the units in
this relation are consistent? (this relation is unambiguously determined
except for some constant C without any units.) (c) Suppose that two
strings have the same mass per unit length, but that the magnitude of
the tension force in the first string is twice as large as that in the second
string. What then is the ratio V1/V2 of the speed V1 of the wave along the
first string compared to the speed V2 of the wave along the second string?
(d) Suppose that two strings are subjected to the same tension force, but
that the mass per unit length of the first string is twice as large as that
of the second string. What then is the ratio V1/V2? (Answer: 30)

H-2
Wave number: Consider a wave traveling along a particular
direction. The “wave number” b of this wave is then, at any

particular time, the number of waves per unit length (e.g., the number
of waves per meter) along the direction of travel of the wave. How is the
wave number b related to the wavelength λ (Answer: 27) (Suggestion:
[s-14])

H-3
Simple way of measuring the speed of sound: To measure the
speed of sound, a person stands at a distance L in front of a large

flat wall and claps his hands regularly at a rate of N claps per unit time
such that each echo (produced by the sound reflected back from the wall)
is heard by the person precisely halfway between every two successive
claps. To show that this information is sufficient to deduce the speed V
of sound, express V in terms of L and N . (Answer: 32) (Suggestion:
[s-17])

H-4
Decibel loudness scale: One can compare the intensity I of any
sound with some standard intensity I0 which is conventionally

chosen to be equal to I0 = 10−12 watt/m2 (i.e., the intensity corresponding
to barely audible sound). A convenient measure of loudness is then given
by the logarithm (to the base 10) of the intensity ratio I/I0. Thus the
loudness β of a sound (measured in “decibels,” abbreviated as “dB”) is
defined as β = 10 log(I/I0). [The decibel is named in honor of Alexander
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0 2 4

0.7cm

86 (cm)

V

V Fig.H-1.

G. Bell, the inventor of the telephone.] (a) What then is the intensity,
expressed in dB, of a sound having the intensity I0 of barely audible
sound? (b) What is the intensity, expressed in dB, of a sound having an
intensity 100 times larger than I0? (c) What is the intensity, expressed in
dB, of a sound with an intensity I = 1watt/m2 at the threshold of pain?
(d) The intensity of sound of busy street traffic is about 70 dB. What is
the corresponding intensity expressed in watt/m2? (Answer: 29)

H-5
Waves moving in opposite directions: FigureH-1 shows, at a
particular time t0, two rectangular displacement waves moving

with speeds of 5.0m/s in opposite directions along a stretched string.
Draw sketches showing the resultant shape of the string 4, 5, 6, 7, 8, and
10millisecond after the time t0. (Answer: 34)

Note: Tutorial section H contains additional problems on the “Doppler
effect.”
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TUTORIAL FOR H

Additional Problems

h-1 ∗DOPPLER SHIFT: MOVING SOURCE: A wave emitted from
a source at a time t1 arrives at a detector at a time t′1. A second wave
emitted from the source at a time t2 arrives at the detector at a time t′2.
When both the source and the detector are at rest relative to the medium
in which the wave is traveling, the time T ′ = t′2 − t′1 between the arrival
of the two waves at the detector is equal to the time T = t2 − t1 between
the emission of the waves from the source. But if either the source or the
detector is moving relative to the medium, T ′ is different from T . The
existence of this difference is called the “Doppler effect.”

For example, suppose that the source moves toward the detector with a
constant speed v. Then the distance traveled by the first wave is larger
than the distance traveled by the second wave by an amount equal to
the distance traveled by the source toward the detector during the time
t2 − t1 between the emission of the two waves. (a) Express the preceding
relation between the distances as an equation in terms of v, the speed V
of the wave in the medium, and the various times. (b) Solve this relation
to express the time T ′ between the arrivals of the waves in terms of the
time T between the emission of the waves and the speeds v and V . Is
T ′ larger or smaller than T? (c) Suppose that t1 and t2 are the times
corresponding to two successive maxima of a sinusoidal wave emitted by
the source, and that t′1 and t′2 are the times corresponding to the arrivals
of these maxima at the detector. Then part (b) gives the relation between
the period T of the sinusoidal wave emitted by the source and the period
t′ of the wave arriving at the detector. What then is the relation between
the frequency ν ′ of the wave registered at the detector and the frequency
ν of the wave emitted by the source? Is ν ′ larger or smaller than ν? (d)
What would be the answers to the preceding questions (a), (b), and (c)
if the source moved away from the detector with a speed v? (e) If a train
blowing its whistle approaches a stationary observer, is the pitch of the
whistle heard by the observer higher or lower than the pitch heard if the
train were stationary? What is the answer to this question if the train
is moving away from the stationary observer? (Answer: 59) (Suggestion:
s-16)

h-2 ∗DOPPLER SHIFT: MOVING DETECTOR: Consider again the
situation described in the preceding frame [h-1], but for the case where
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th source is stationary relative to the medium while the detector moves
toward the source with a constant speed v. Then the distance traveled by
the first wave is larger than the distance traveled by the second wave by
an amount equal to the distance traveled by the detector during the time
t′2 − t′1 between the arrival of the two waves at the detector. (a) Express
this relation between the distances as an equation in terms of v, the speed
V of the wave in the medium, and the various times. (b) What then is
the answer to part (b) of frame [h-1]? (c) What then is the answer to
part (c) of frame [h-1]? (d) What would be the answers to the preceding
questions (a), (b), and (c) if the detector moved away from the source
with a speed v? (Answer: 61)

h-3 ∗DOPPLER SHIFT: REFLECTION FROM A MOVING OB-
JECT: An object moves toward a source of waves with a speed v relative
to a medium in which the speed of the waves is V . A first wave, leaving
the source at a time t1, then arrives at the moving object at a time t′1
when it is reflected and then travels back to the source so as to arrive
there at a time t′′1 . Similarly, a second wave, leaving the source at a time
t2, arrives at the moving object at a time t′2 when it is reflected and then
travels back to the source so as to arrive there at a time t′′2 . (a) Write
an equation expressing the fact that in traveling toward the moving ob-
ject, the distance traveled by the first wave is larger than that traveled
by the second wave by an amount equal to the distance traveled by the
moving object toward the source during the time T ′ = t′2 − t′1. Express
this relation in terms of v, V , and the elapsed times T = t2 − t1 and T ′.
(b) Write an equation expressing the fact that, in traveling back toward
the source after reflection, the distance traveled by the first wave is also
larger than that traveled by the second wave by an amount equal to the
distance traveled by the moving object toward the source during the time
T ′ = t′2 − t′1. Express this relation in terms of v, V , T ′ and the elapsed
time T ′′ = t′′2 − t′′1 between the arrival of the waves back to the source. (c)
Use the preceding relations to express T ′′ in terms of T and the speeds v
and V . (d) In the case of sinusoidal waves, suppose that T and T ′′ are the
periods (or times between two successive maxima) of the waves emitted
by the source and arriving back at the source. What then is the relation
between the frequency ν ′ of the waves arriving back at the source and the
frequency ν of the waves originally emitted by the source? (Answer: 63)

h-4 ∗DOPPLER DETECTION OF A FETAL HEARTBEAT: Ultra-
sonic waves can be useful to observe the fetal heartbeat of an unborn child
at an early stage of the gestation period, even when the fetus is no more
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than 3months old. To show how this can be done, imagine that an ultra-
sonic wave, having a frequency of 5.00× 106 Hz, is sent through the skin
of the mother’s abdomen and then reflected by the moving heart muscle
of the fetus. Suppose that the heart wall moves toward the abdomen skin
with a speed of 7 cm/s and that the speed of sound in the abdomen is
1500m (i.e., the same as that in water). (a) In this case (using the results
obtained in frame [h-3] is the frequency of the reflected ultrasonic waves
larger or smaller than that of the original ultrasonic waves? (b) What is
the change (ν ′′ − ν) in the observed frequency ν ′′ of the reflected ultra-
sonic wave compared to the frequency ν = 5.00 × 106 Hz of the original
ultrasonic wave sent into the abdomen? (Answer: 60)
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PRACTICE PROBLEMS

p-1 MOTION OF A WAVE: A displacement wave moves along a

long stretched string with a velocity of 4.0 × 103 cm/s opposite to the
x̂ direction. The graph shows, at the particular time t0 = 0.300 s, the
wave (described by the component w of the displacement of the string
along the ŷ direction perpendicular to x̂) at various positions (described
by the position coordinate x along the x̂ direction). Draw the graph
showing the wave at various positions along the string at the later time
t = 0.305 s. (Answer: 55) (Suggestion: Review text problem A-1.)

w

1.0 cm

0

t = 0.300 sec0

60 65
(cm)

x
x̂

p-2 MOTION OF A WAVE: A wave travels with a velocity of

4.0 × 103 cm/s opposite to the x̂ direction along the stretched string
described in practice problem [p-1]. The displacement component w of
the string, observed at the fixed position x0 = 60 cm, then varies with
the time t in the manner indicated in the graph. We are interested in
finding the position of this wave at the particular time t1 = 0.210 s. (a)
Consider the part A of the string (where w = 0 at the time 0.202 s).
Through what distance does this part of the wave travel until the time
t1 = 0.210 s? What then is the position of the part of the wave at the
time t1? (b) Answer the same questions for parts B and C of the string.
(c) To show the positions of the various parts of the wave at the time t1,
draw a graph of w versus x at the time t1. (Answer: 52) (Suggestion:
Review text problem A-2.)

w

-3.0 cm

0

x = 60 cm0

0.202 0.205

(sec)
tA

B

C
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p-3 RELATION BETWEEN V , λ, AND ν: Properties of sinusoidal

waves: The graph shows the component y of the transverse displacement
of a wave along a string at various positions (described by the coordinate
x along the string). This wave, which has a frequency of 25Hz, travels
to the right with a velocity of 1500 cm/s. At the particular time t0
indicated in the graph, y has its maximum value of 0.2 cm at the point
x0. (a) What is the value of y at the point x0, 0.03 second after the time
t0? (b) At the time t0, what is the value of y at a point 150 cm to the
right of the point x0? (Answer: 51) (Suggestion: See [s-11] and review
text problem C-1.)

0
x0 x

y

0.2 cm

p-4 RELATION BETWEEN V , λ, AND ν: Useful electromagnetic

waves (a) Electromagnetic waves commonly used for radar have a wave-
length (in vacuum) of 3.0 cm. What is the frequency of these waves?
(b) “Diathermy” machines employed in medicine for heating tissues well
below the skin use electromagnetic waves having a frequency of about
2.5 × 109 Hz. What is the wavelength of these waves in vacuum? (An-
swer: 56)

p-5 RELATION BETWEEN V , λ, AND ν: Speed of water waves: An

electric tooth brush, held so as to touch the surface of water in a basin,
vibrates up and down at a rate of 10 vibrations per second. Water waves
are then observed to spread out in all directions from the vibrating tooth-
brush. The distance between the successive crests of these water waves
is observed to be 3 cm. What then is the speed of the waves traveling on
the water surface? (Answer: 54)

p-6 INTENSITY AND EMITTED POWER: As mentioned in test

problem E-3, the Viking spacecraft had a radio transmitter emitting
16watts of power. (a) Assuming that this power is emitted uniformly
in all directions, how far from the earth could this spacecraft be and still
be detected by the Goldstone radio antenna? This antenna has a diame-
ter of 64m (or area of 3.2 × 103 m2) and can detect a power as small as
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2× 10−21 watt. (b) How much larger is this distance than the distance of
1.5× 108 km between the sun and the earth? (Answer: 53) (Suggestion:
See [s-8] and text problem E-3.)
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SUGGESTIONS

s-1 (Text problem B-1): Part c: As a result of the displacement of atom
3, there are more atoms than normal in the region between x3 and x5 (i.e.,
the solid in this region has been compressed). Hence the mass contained
in the volume of this region has become larger so that the density (or
mass per unit volume) in this region has become larger.

s-2 (Text problem A-3): Figure A-3 indicates that a particle (located at
x0 = 20 cm) moves during the time from 0.104 s to 0.106 s at a uniform rate
so that its component of displacement along the ŷ direction (perpendicular
to the string) is w = 0 at the earlier time and w = 3.0 cm at the later
time. What then is the velocity of the particle at the time 0.105 s?

s-3 (Text problem A-1): What is the time elapsed between the initial
time t0 and the final time t? During this time, through what distance
does any part of the wave in Fig. A-2 travel? At the time t = 0.072 s,
what then is the position of the part of the wave originally located at
x = 33 cm? Similarly, what then is the position of the wave originally
located at x = 34 cm? Use this information to sketch the graph showing
the location of the entire wave at the time t = 0.072 s.

s-4 (Text problem B-2): Part a: By the Pythagorean theorem, L′2 =
L2 + w2. But w = 0.001L. Hence w2 = 0.000001L2 is utterly negligible
compared to L2. Thus, to excellent approximation, L′2 = L2 or L′ = L.

s-5 (Text problem A-2): Part a: The part C of the wave travels from
the time t = 0.106 s to the time t1 = 0.108 s. During this time interval
of 0.002 s, the wave (traveling with a velocity of 6.0 × 103 cm/s along x̂)
then travels a distance of (6.0 × 103 cm/s)(0.002 s) = 12 cm along the x̂
direction. Since this part of the wave was initially located at x0 = 20 cm,
what is the value of x specifying the position of this part of the wave at
the later time t1?

s-6 (Text problem C-1): Review the definitions of period, frequency,
and wavelength. All questions can then be answered by using the relations
ν = 1/T and V = λν. Remember that the speed V of a radio wave in
vacuum (and thus very nearly in air) is 3.00× 108 m/s.

s-7 (Text problem B-3): Electric and magnetic waves can exist in vac-
uum as well as in materials. Hence electromagnetic waves can travel in
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all media (whether vacuum or material media). In a vacuum, the speed
of any electromagnetic wave is always the same, equal to the fundamental
constant c = 3×108 m/s. Light and radio waves are merely different kinds
of electromagnetic waves.

s-8 (Practice problem [p-6]: What is the minimum intensity which the
Goldstone antenna can detect? Use this information to find the farthest
possible distance of the spacecraft.

s-9 (Text problem B-4): A sound wave is an elastic wave involving the
displacement of atoms from their normal positions. Such a wave can then
not exist if there are no atoms which can be displaced, i.e., it cannot
exist in a vacuum. On the other hand, such a sound wave can exist in
any material since any material contains atoms which can be displaced
from their normal positions.

s-10 (Text problem E-3): What is the intensity of the radio waves ar-
riving at the antenna? What then is the average power arriving at the
antenna with the specified area?

s-11 (Practice problem3: Part a: How is the elapsed time related to
the period of the wave?

Part b: How is the distance between the points related to the wavelength
of the wave?

s-12 (Text problem F-2): Part a: Draw the two waves, in a manner
similar to that in Fig. F-1, but remembering that in this case the ampli-
tude A1 of the first wave is 3 times as large as the amplitude A2 of the
second wave. Remembering that the resultant wave at any time is simply
equal to the sum of the individual waves, how then is the amplitude of
the resultant wave related to the amplitudes A1 and A2 of the individual
waves?

Part c: Express the sum I1+I2 in terms of I2, using the answer to problem
F-1 where you found how I1 is related to I2.

s-13 (Text problem E-4): The relation I = P̄s/4πR
2 implies that the

product IR2 = constant for waves emitted by a given source. Thus the
intensities I and I ′ at two different distances R and R′ from the source
are related so that IR2 = I ′R′2.
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s-14 (Text problem H-2): Review how the frequency (i.e., the number
of waves per unit time) is related to the period. The wave number b is
related to the wavelength λ in a similar manner.

s-15 (Text problem F-1): Here I1 = γA2
1 = γ(3A2)

2 and I2 = γA2
2.

What then is the relation between I1 and I2?

s-16 (Tutorial from H-1): (a) Express the distance traveled by the first
wave in terms of the speed V of the wave and the time (t′1 − t1) traveled
by this wave. (b) Express the distance traveled by the second wave in
terms of V and the time (t′2 = t2) traveled by this wave. (c) Express
the distance traveled by the source, during the time (t2− t1) between the
emission of the waves, in terms of this time and the speed V of the source.
(d) Hence write the relation expressing the fact that the distance traveled
by the first wave is larger than the distance traveled by the second wave
by an amount equal to the distance traveled by the source between the
emission of the waves. (e) Simplify this relation by expressing it in terms
of the time T = t2 − t1 between the emission of the waves and the time
T ′ = t′2 − t′1 between the arrival of the waves at the detector. (Answer:
57)

s-17 (Text problem H-3): What is the time required for the sound from
a clap to travel from the person to the wall and then back again? (Express
this result in terms of L and V .) What is the time between a clap and the
return of the echo halfway between the next clap? (Express this result in
terms of the clapping rate described by N .)
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ANSWERS TO PROBLEMS

1. a. L′ ≈ L (See [s-4])

b. nearly equal

c. nearly equal

2. a. 1.5× 103 cm/s along ŷ

b. smaller

3. Yes. Sound can travel through the air in the jar.

b. Bell can be seen, but not heard. (Light can travel through vacuum,
but sound cannot.)

4.

w

0
32 34

0.4cm

33
(cm)

t = 0.072 sec

x

5. a. L′ = 0.999L

b. smaller

c. larger

6. a. yes

b. yes

c. 3× 108 m/s for both waves

d. yes

7. a. 12 cm, x = 32 cm

b. 18 cm, x = 38 cm

c. 24 cm, x = 44 cm

d.

w
C

B

A

3.0 cm

0

t = 0.108 sec0

30 35 40 45 x
(cm)32 44

(graph is correct!)
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8. a. 2.27× 10−3 second

b. 0.77m in air, 3.4m in water

c. same

d. 0.017m, 17 m

e. much larger than atom or bacterium, about equal to eardrum

9. a. no

b. yes

c. yes

d. yes

10. a. 5.9 second

b. 6.7× 10−6 second; tl/ts = 1.1× 10−6

c. 5.9 seconds

11. a. 3× 109 Hz

b. much larger

12. a. 1.00µ s= 1.00× 10−6 s

b. 1.00× 106 Hz

c. 10−4 volt/meter

d. 0, +10−4 volt/meter

e. 300meter

f. 150meter

13. a. 5.1× 1014 Hz

b. 3.9× 10−7 m

c. much larger than atom, about equal to bacterium, much smaller
than pupil

14. a. 3.74× 1026 watt

15. a. 0.68m

b. 500Hz

c. 2.0× 10−3 s

d. ρ0
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e. minimum

f. −ρ0, maximum

g. 0,0

16. 3× 102 m

17. a. 1.27× 1012 watt

b. 3.99× 1019 joule

c. 16

18. a. A = 2A2

b. I = 4I2

c. smaller, 0.4

19. a. 4.5× 10−20 watt

b. yes

20. a. A = 4A2

b. I = 16I2

c. larger; 1.6

21. 106

22. a. 300m, 3m

b. larger

23. a. 9

b. 9

24. I1 = 9I2

25. BLK

26. a. λ1 = λ2/2

b. no

27. b = 1/λ

28. a., c. waves are always opposite
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b. waves are the same

29. a. 0

b. 20

c. 120

d. 10−5 watt/m2

30. a. m/s, kgm/s2, kg/m

b. V = C
√

Ft/m′

c.
√
2 = 1.41

d. 1/
√
2 = 0.707

31. BLK

32. V = 4LN

34.

0

0

0

0

0

0

2

2

2

2

2

2

6

6

6

6

6

6

8

8

8

8

8

8

4 ms

5 ms

6 ms

7 ms

8 ms

10 ms

4

4

4

4

4

4

(cm)

0.7 cm

51. a. 0

b. −0.2 cm

52. a. 32 cm (opposite x̂), x = 28 cm
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b. B: 24 cm (opposite x̂), x = 36 cm C: 20 cm (opposite x̂), x = 40 cm

w

0
28 36 40

-3.0 cm

32

(cm)

t = 0.210 sec

x

53. a. 1.4× 1012 m

b. 9.5, but 9.3 is OK.

54. 30 cm/s

55.

w

0
40 45

1.0 cm

(cm)

t = 0.305 sec

x

56. a. 1.0× 1010 Hz

b. 0.12m

57. a. V (t′1 − t1)

b. V (t′2 − t2)

c. V (t2 − t1)

d. V (t′1 − t1)− V (t′2 − t2) = v(t2 − t1)

e. V (T ′ − T ) = −vT

58. BLK

59. a. V (t′1 − t1)− V (t′2 − t2) = v(t2 − t1)

b. T ′ = T (1− v/V ), smaller

c. ν = ν(1− v/V ), larger

d. Preceding answers, with −v replaced by +v. Thus T ′ > T and
ν′ < ν.
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e. higher, lower

60. a. larger

b. 467Hz

61. a. V (t′1 − t1)− V (t′2 − t2) = v(t′2 − t′1)

b. T ′ = T/(1 + v/V ), smaller

c. ν′ = ν(1− v/V ), larger

d. Preceding answers with v replaced by −v Thus T ′ > T and ν′ < ν.

62. BLK

63. a. V (t′1 − t1 − V (t′2 − t2) = v(t′2 − t1) or V (−T ′ + T ) = vT ′

b. V (t′′1 − t′1)− V (t′′2 − t′2) = v(t′2 − t′1) or V (−T ′′ + T ′) = vT ′

c. T ′′ = T [(V − v)/(V + v)]

d. ν′′ = ν[(V + v)/(V − v)]

64. BLK

59

MISN-0-430 me-1

MODEL EXAM

GIVEN INFORMATION: c = 3.0× 108 meter/second

1. Motion of a wave. A displacement wave moves along a string with
a velocity of 48 meter/second along the x̂ direction. The following
graph illustrates the displacement component w of the wave, as a
function of time, at the fixed position x = 0.0meter.

-1.00 -0.75 -0.50 -0.25 0.25 0.50

t (sec)

x = 0.0 m

Draw a graph showing how the displacement component varies
with time at the fixed position x = −12meter.

2. Frequencies and wavelengths of visible light.

a. What are the approximate frequencies between which electromag-
netic radiation is perceived as visible light?

b. What are the wavelengths corresponding to these frequency limits?

3. A method of estimating the intensity of solar radiation. A
student points her head toward the sun, with her eyes closed, and notes
the approximate brightness of the sun through her closed eyelids. Then
she goes inside, and finds that she must hold a 200watt clear lightbulb
0.02meter from her eye to yield the same approximate brightness.

If only 2.5 percent of the energy consumed by the lightbulb is converted
into visible radiation and on the assumption that the sun and the
lightbulb are legitimately comparable what is the intensity of solar
radiation implied by these observations?

4. Amplitudes and intensities of sound waves. A sound
wave of displacement amplitude 2.0 × 107 meter has an intensity of
3.0 × 103 watt/meter2. If the amplitude of this wave is increased by
10 percent, what is the corresponding increase (in percent) in the in-
tensity of the wave?
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Brief Answers:

1.

-1.00 -0.75 -0.50 -0.25-1.25

x = -12 m

2. a. 4× 1014 hertz, 7× 1014 hertz

b. 7.5× 10−7 m, 4.3× 10−7 m

3. 1.0× 103 watt/meter2

4. 20%
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