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1. Vocabulary: microscopic system, macroscopic system, atomic
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Output Skills (Knowledge):

K1. Define the differential and total elastic cross sections and apply
the definitions to problems similar to the one in the procedures.

K2. Derive the classical differential and total elastic cross sections for
hard sphere scattering,

K3. State the asymptotic form of the wave-function in elastic scatter-
ing, giving the significance of each term. Use this asymptotic form
to define the scattering amplitude and give the connection between
the scattering amplitude and the differential cross section.

K4. State the appropriate form of Fermi’s Golden Rule for elastic scat-
tering and indicate how it suggests the Born approximation. State
the Born approximation clearly.

Output Skills (Problem Solving):

S1. Calculate differential cross sections in the Born approximation for
potentials of the type given in the problems assigned in the pro-
cedures.

External Resources (Required):

1. E.E. Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).
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SCATTERING IN THE BORN APPROXIMATION
by
R. Spital

1. Introduction

The calculation of scattering cross sections is one of the most im-
portant uses of Fermi’s Golden Rule. Since Fermi’s rule involves only 1
matrix element of the interaction, it is a first-order approximation to the
exact result. This approximation in turn suggests an approximation to
the scattering amplitude, a complex quantity closely related to the cross
section. It is this last approximation that is called the Born approxima-
tion. In this unit we shall use the Born approximation to calculate elastic
scattering amplitudes and cross sections for simple potentials.

2. Procedures

1. The references in this unit are to Anderson. To review the meaning of
the scattering cross sections, read section 3.2 through the beginning of
the discussion of Rutherford scattering. For a given target the cross
sections are defined as follows:

do  number scattered per unit time into solid angle df)

dQ  number incident per unit time per unit area
do number scattered per unit time
g = —_ =
dQ number incident per unit time per unit area

o is the total elastic cross section. We shall not deal with inelastic
scattering in which particles are created or destroyed (or in the internal
state of the target or projectile changes).

The cross section is a measure of the probability that an interaction
occurs; the larger the cross section, the greater the probability that an
interaction will take place when a particle is incident on the target. In
general the cross section depends on the initial and final states of both
the target and the projectile (including energy, spin, angle of scatter,
etc.). To calculate the cross section a knowledge of the dynamics
(nature of the interaction) is required.

The above definitions treat the target as a single scatterer. We are
almost always interested in extracting the cross section for a single mi-
croscopic scatterer from measurements made on a macroscopic target
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consisting of a great many such scatterers. In this case one must divide
the cross section of the macroscopic target by the number of scatterers
in the path of the beam. Note that this recipe assumes the target is
very thin. (Why?)

As an exercise do the following problem: A beam of protons of 3 cen-
timeter diameter contains 10'° protons/(seccm?). It is normally inci-
dent on a thin foil whose thickness ¢ is such that pt = 0.0001 gm/cm?,
where p is the density of the foil. The scatterers in this problem are
the atomic nuclei of the foil which have an atomic weight of A = 200.
A counter placed at an angle of 45° with respect to the beam direction
is located 1m from the target. It accepts all protons that cross an
area of 10 cm? which is perpendicular to the line joining the counter to
the target. There are 2.1 protons observed in the counter per second.
What is the differential cross section do/d2 for proton-nucleus elastic
scattering at 45°7

(Answer: 0.01 barns/ster; 1 barn = 10724 cm?)

. To gain practice calculating cross sections classically, solve problem 3.1.

. Now for some quantum scattering theory. The definitions of the cross

section are the same but the method of calculation is different.

Begin by reading section 11.1 through equation 11.2. Equation 11.1 is
the asymptotic form of the wave function for elastic scattering. That
is; it describes the wave far from the interaction region; in the in-
teraction region the wave is much more complicated. Note that the
wave-function in this case represents the superposition of the ingoing
and outgoing particle fluxes, rather than the state of a single particle
as we have been used to. (We can achieve the same results in a more
physical and intuitive manner by using single particle wave-packets
which propagate in space and time - but this is a more difficult ap-
proach.) f(0) is called the elastic scattering amplitude; “elastic” is
often omitted when it causes no confusion to do so, and we shall do so
here. f depends only on the scattering angle 6 in problems with az-
imuthal symmetry - this shall always be the case for us. (Of course, f
also depends on energy, which particles are scattering, etc.. The above
statement refers only to the angular dependence of f.) Equation 11.2
is the connection between f and the differential scattering cross sec-
tion. Note that f is a complex function, but do/dSQ is always real and
positive.

You need not follow the derivation of equation 11.2; but you should
memorize equations 11.1 and 11.2 and be sure you understand what
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the 2 terms in equation 11.1 represent.

4. Now read section 11.2 through the end of the paragraph containing
equation 11.22. Equation 11.18 is the form of the Golden rule needed.
In what sense is the interaction time - dependent? Equation 11.21 is
the Born approximation to the scattering amplitude. The “derivation”
given in the text is “hand-waving”; it clearly does not give the phase
of the scattering amplitude (which is certainly specified in equation
11.21). However, the cross section is surely proportional to R, so that
the amplitude must vary as v/R. And certainly, it makes sense that
the states ¢ and f are plane-wave eigenstates of the “free” Hamiltonian
(Hamiltonian far from the interaction region). (Needless to say, there
are much better derivations of this approximation.) The upshot of the
Born approximation in any case is that, to lowest order in the inter-
action, the scattering amplitude is proportional to the matrix element
of V between plane-wave states.

5. Use the Born approximation to solve problems 11.6, 11.8, and 11.10.
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