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Input Skills:

1. Vocabulary: coupled differential equations, potential energy (of a
charged particle in a uniform electric field).

2. Unknown: assume (MISN-0-390).

Output Skills (Knowledge):

K1. Given a Hamiltonian of the form H = H0 +H
′(t), where H′(t) is

a small time-dependent perturbation and complete sets of eigen-
functions and eigenvalues, {φn} and {En} of H0:

(a) write ψ(x, t) as a time-dependent linear combination of the φn.

(b) Substitute (a) into the S-equation and obtain an exact set of
coupled differential equations for the coefficients of the expan-
sion.

(c) Assuming that the system was initially in an eigenstate of H0,
solve the equations of (b) to first order in the perturbation H.

K2. Assuming H′ has no explicit time-dependence, derive the transi-
tion probabilities of the system under the influence of the pertur-
bation and discuss its implications in the manner of Saxon pages
210-211. Obtain the Golden Rule by generalizing the result of K2
to where the transition is made to any member of a continuous
collection of states, all of whose energies are close to the initial
energy. State the circumstances under which this result is valid.
Show how this result leads to the familiar exponential decay law.

Output Skills (Problem Solving):

S1. Apply the results of K2 to solve problems of the type given in the
procedures.

External Resources (Required):

1. D. S. Saxon, Elementary Quantum Mechanics, Holden-Day, Inc.
(1968).
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TIME-DEPENDENT PERTURBATIONS I

by

R. Spital

1. Introduction

We turn now to the important task of dealing with perturbations
which depend upon time. Sometimes the time-dependence lies only in
the turning on and off of the disturbing force, as in the case of an atom
lying in an external magnetic field which can be switched on and off
by the experimenter. At other times the perturbation has explicit time
dependence, as in the case of electromagnetic radiation incident on an
atom - if the radiation is monochromatic, the electric field associated
with it varies sinusoidally in time.

In this unit we shall consider only the first kind of time-dependence
and go on to treat the second kind in the next unit. Among our objectives
is the derivation of Fermi’s “Golden Rule” which is of great value for a
multitude of practical calculations.

2. Procedures

The material for this unit is in Saxon pages 208-213. This material
is available in the PA library. Ask for it as “the readings for CBI Unit
391.”

There will be no references to Anderson in this unit. All references
refer to Saxon.

1.(a) Read section VII. 6 of Saxon through equation 60. Equation 60 is
the desired expansion.

(b) Continue reading through equation 61. This equation is the desired
set of coupled equations. Fill in all the steps leading to this result.
Note the definition H ′

mn(t) ≡
∫ ∞

−∞
φ∗m(x)(H

′(t)φn
(x))dx. The use

of only one spatial variable x instead of ~r is done for brevity only;
the results apply equally well to 3-dimensional wave-functions with
x replaced by ~r.

(c) Continue reading through the results for ck and cm (equation 62
and the equation above it). Fill in all steps leading to these results.
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2. Continue reading through equation 63 and fill in all missing steps. This
is the desired result. Note the graph of the transition probability on
page 211. About what energy is the graph peaked? This corresponds to
conservation of energy; the perturbation is small and does not greatly
change the energy of the system.

Note that only 1 matrix element of H′ appears in the results for ck and
cm. Thus these results are called the first order perturbation theory
results. Successively better approximations to the solutions of equation
61 will involve higher and higher powers ofH′; ifH′ is sufficiently small,
these higher terms can be neglected. Here then is the fundamental
approach of time-dependent perturbation theory: Expand the state
of the system as a power series in the perturbation (also called the
“interaction”) H′. If H′ is sufficiently small, only the first few terms
will be needed.

This doesn’t always work but it is often the only sensible approach to
a complicated Hamiltonian.

Now read the discussion following equation 63 through the end of the
paragraph surrounding figure 3. Skip the remarks on why the rapid
increase with time might be expected; we have not covered the nec-
essary background in degenerate state time-independent perturbation
theory. Make sure you can answer the following questions.

(a) Assuming Ek is much different from Em, what can you say about
|cm(t)|

2 if H is small?

(b) Suppose Em ≈ Ek. How does |cm(t)|
2 vary with time? Why is

this time-dependence surprising? Under what circumstances will
the expected time-dependence be realized? item [(c)] How does
width of the graph of |cm(t)|

2 vs.Em depend on t? Is this behavior
reminiscent of the uncertainty principle? This is not quite a direct
application of the uncertainty principle. Why?

3. Continue reading through equation 67. Equation 67 is called the
“Golden Rule.” Fill in all the steps leading to this result.

If there are N systems in the state k, WN gives the number of transi-
tions per unit time from the state k to the state m. (Think of N nuclei
in excited state k decaying by α-emission to final state m).

Exercise: If there are N systems in the state k at time t, how many
are there at time t + dt? Assume that m is the only state to which
the perturbation induces transitions. Use this result to show that
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N(t) = N(0)e−Wt/h̄. What is the mean life-time of the state k? How
should these results be modified if the perturbation connects k to more
than one state?

Now read the discussion following equation 67 through the end of the
paragraph preceding the one containing equation 71. Under what con-
ditions is the Golden Rule valid?

4. To gain practice with these ideas, solve problem 15a and the following
problem:

Let perturbation of problem 15a act on an electron (mass m, charge e)
in an infinite one-dimensional square well. If the electron is initially in
its ground state, to what excited states can the perturbation induce a
transition? What is the probability of finding the electron in the 2nd,
3rd, and 4th excited states at the time τ , if the perturbation is turned
on at t = 0?

(To do these problems you will need the potential energy function
corresponding to an electron in a uniform electric field. What is this
potential? Use this potential as the perturbation H in the results of
Output Skill K2.)
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