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1. Review the properties of vector spaces from your studies of linear
algebra.
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FORMAL STRUCTURE OF QM (II)

by

R. Spital

1. Introduction

In this unit we shall examine the relationship between arbitrary wave
functions and eigenstates of hermitian operators. This is best achieved by
introducing the concept of an infinite-dimensional linear scalar product
space or “Hilbert Space.”

2. Procedures

1. Read section 6.3 through the middle of page 216. In addition, you
may wish to review the properties of vector spaces from your studies
of linear algebra. See also the top of page 217 for the last definition.

The distinguishing characteristics of the Hilbert Spaces of quantum
mechanics are:

a. The vectors represent the states of the system. In the coordinate
representation, the states are represented by wave functions.

b. An arbitrary vector can be expressed as a linear combination of basis
vectors. These basis vectors are usually chosen to be the eigenstates
of a hermitian operator, and most of the time of the Hamiltonian.

There is a theorem which we shall not prove that states:

For any hermitian operator Q, there exists at least one basis in the
Hilbert Space such that each function is an eigenfunction of Q.

This is a very important theorem which says that the eigenfunctions
of Q are complete, i.e. a basis can be formed from them so that every
state can be expanded in terms of eigenfunctions of Q. We shall return
to the meaning of these expansions later.

A basis usually has infinitely many members - e.g. the infinite square
well eigenfunctions form a basis for the states of “a particle in a 1 -
dimensional box.” All members of the basis must be linearly inde-

pendent, see top of page 216. If not, 1 member of the basis could be
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expressed in terms of the others and so would be unnecessary. Intu-
itively, a basis is the largest set of linearly independent vectors one
can extract from the space, as well as the smallest set of vectors that
one can use to construct an expansion for any vector. The number
of vectors in the basis is called the dimension of the space - usually
infinite.

(c) It is usual to use an orthonormal basis, for which < ψ̂i|ψ̂j >= δij ,

where ψ̂i and ψ̂j are any two members of the basis. Recall that

ψ̂i and ψ̂j will automatically be orthogonal if they correspond to

different eigenvalues. If ψ̂i and ψ̂j are degenerate, the Schmidt
orthogonalization procedure can be used; but we will not take that
up.

2. Read the proof in the middle of page 216 and be sure you can reproduce
it. Note that this does not depend on whether or not the ψ̂i form an
orthonormal basis.

3. Read the proof at the bottom of page 216 and be sure you can re-
produce it. This proof assumes the ψ̂i are orthonormal. The positive
definiteness of < ψ|ψ > is usually considered to be part of the defini-
tion of a scalar product.

4. Read the proof on page 217 and be sure you can reproduce it. This
very useful inequality is often used in theoretical discussions. Under
what conditions does equality hold?

5. Consider a particle in an infinite square well in one-dimension with
walls at x = ±α.

a. Write down the correctly normalized wave functions. These form
an infinite orthonormal basis for this system.

b. The wave function to be studied is

ψ(x) = A cos
(π

α
x
)

cos
( π

2α
x
)

Normalize this wave-function, i.e. determine A.

c. Express ψ(x) as a linear combination of basis vectors. To do this,
prove and use the following theorem:

Let ψ̂i be an orthonormal basis and let ψ =
∑

i Ciψ̂i. Then:

Ci =< ψ̂i|ψ > .
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d. Verify explicitly that
∑

i |Ci|
2 = 1 for your coefficients of part (c).

e. What is the probability of obtaining each energy eigenvalue as a
result of an energy measurement? Prove that your probability is a
number between 0 and 1.

f. Repeat steps (b) through (e) for ψ(x) = A cos2(πx/2α). You will
now get an infinite number of C’s. If you can’t sum the series in
(d) add the first 10 terms and see how close you come to 1.
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