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Output Skills (Knowledge):

K1. State the superposition principle.

K2. Define “scalar product” and show that the result does not depend
on whether the coordinate or momentum space representation of
the wave-function is used.

K3. State: (1) the fundamental properties shared by all observable
operators; and (2) the connection between the eigenvalues of an
observable operator and measurement values of that observable.

K4. Define: hermitian operator and adjoint or hermitian conjugate.

K5. State the relationship between the commutator of two operators
and one’s ability to simultaneously measure the two observables
to which they correspond.

K6. Define degenerate eigenvalue and degenerate eigenstates.

K7. Prove that the eigenvalues of a hermitian operator are real and
the eigenfunctions of a hermitian operator are orthogonal if they
correspond to distinct eigenvalues.

K8. Prove that if two operators commute and one has non-degenerate
eigenvalues, its eigenfunctions are also eigenfunctions of the other
operator.

Output Skills (Problem Solving):

S1. Given an expansion of the state of the system in terms of eigen-
values of the operator Q, calculate the probability of the various
possible outcomes of a measurement of Q.

S2. Solve problems such as 6.1 through 6.5.

External Resources (Required):

1. E. E.Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).
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FORMAL STRUCTURE OF QM (I)

by

R. Spital

1. Introduction

In this and the following unit we shall briefly explore the Hilbert
Space in which the operators of quantum mechnaics merrily change one
state into another. Our aim is to get a better understanding of the rela-
tionship between the various possible states of the system and the possible
properties that these states can have.

2. Procedures

1. Read chapter 6 up to postulate 3 on page 206. The superposition
principle is contained in postulate 2 and the subsequent discussion.
Note that the ci in equation 6.3 are in general complex numbers.

2. The Scalar product of two wave-functions ψa and ψb is defined by

< ψa|ψb >≡

∫

ψ∗

a(~r)ψb(~r) d
3~r

Let φa and φb be the momemtum space wave-functions corresponding
to ψa and ψb. Show that

< φa|φb >≡

∫

φ∗a(~p)φb(~p) d
3~p =< ψa|ψb >

Because the scalar product is independent of the representation of the

states and depends only on the states themselves, we may write simply
< a|b > for the scalar product. How is < a|b > related to < b|a >?

3. Continue reading through the beginning of the paragraph in which
equation 6.12 appears. The necessary properties and the connection
are contained in postulate 4 and the definitions following it.

4. The best deinition of “hermitian operator” to remember is equation
6.10. If you use equation 6.8, you must be prepared to derive equation
6.10 from it.
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The adjoint or hemitian conjugate, Q+, of an operator Q (called “Her-
mitian adjoint” by the book) is defined by equation 6.11. Hermitian
operators are therefore their own hermitian conjugates and are said to
be “self-adjoint.”

5. Read up to the theorem at the bottom of page 209 The discussion
given applies to the case when Q is the Hamiltonion. More generally
let ψ = Σiciψi where Qψi = qiψi, i.e. the ψi are eigentates of Q
with eigenvalues qi. All possible eigenstates are present in the sum (al-
though perhaps with a zero coefficient), and we assume for simplicity
that the eigenstates are non-degenerate; i.e. there is a 1 to 1 correspon-
dence between the eigenstates and the eigenvalues. The probability of
obtaining qi from a measurement of Q when the system is in the state
ψ is | < ψi|Qψ > |2. Assume that < ψi|ψj >= δij. (You will prove
this below). Then show that | < ψi|Qψ > |2 = |ci|

2 provided ψ is
normalized.

The act of measurement forces the system into an eigenstate of Q. If
Q commutes with the Hamiltonian (see below), the system will remain
in that eigenstate until disturbed again. We shall discuss this further
in the next unit.

6. Read the 2 proofs and be sure you can reproduce them.

7. Read the rest of the section. Make sure you can derive equation 6.16.
You need not prove the corollary at the bottom of page 211, equation
6.16 already gives the result. Now solve problems 6.l; 6.2 a, c; 6.3,
6.4, 6.5 to gain some practice with the ideas we’ve introduced. Once
again, you are reminded that the energy operator is H, and not the
expression suggested in problem 6.2b.

8. Read section 2 through the end of the proof of the corollary on page
213. The conclusion that [P,Q] = 0 does not follow from the argument
given in the book. It is indeed possible for ψ to be a simultaneous eigen-
state of P and Q even if [Q,P ] 6= 0. However, if for every eigenvalue
of P , say pi, there is an eigenfunction ψi which is also an eignefunction
of Q, it follows that [P,Q] = 0.

What are the implications of this for the measurement process? Prob-
lem 6-5 shows that unless ψ is an eigenfunction of Q, ∆Q for that state
is non-zero. Therefore, in order to be able to measure P , Q simultane-
ously to arbitrary accuracy (∆P = ∆Q = 0), we require the existence
of a complete family of simultaneous eigenstates of P and Q. (More
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on “completeness” in the next unit). This in turn requires [P,Q] = 0.
To summarize:

It is possible to simultaneously measure two observables to arbitrary
accuracy if and only if they commute.

Commuting observables are called “compatible” for this reason. In
view of the above discussion we see at once that we cannot simulta-
neously measure x and px to arbitrary accuracy, agreeing with the
uncertainty principle. We also see that in order to have a set of en-
ergy eigenstates which are eigenstates of an operator Q, we require
[Q,H] = 0.

9. An eigenvalue is said to be degenerate if and only if there exist two lin-
early independent wave-functions ψ1 and ψ2 which are both eigenfunc-
tions corresponding to the eigenvalue. (Linearly independent means
that ψ1 is not constant multiple of ψ2.) Two eigenstates (eigenfunc-
tions) are said to be degenerate if and only if they correspond to the
same eigenvalue and are linearly independent.

10. Be certain that you can reproduce the proof of the corollary on page
213.

11. Read the rest of section 6.2. Be sure you can derive equation 6.18.
Most operators do not explicity depend on the time so that ∂Q/∂t = 0.
Equation 6.18 then shows that the expectation value of Q is constant
in time if [Q,H] = 0. When a measurment of Q is made on a system,
the system is forced into an eigenstate Of Q. The expectation value
of Q in the eigenstate is, of course, the eigenvalue. If [Q,H] = 0, this
expectation value is constant in time. Let the eigenvalue (expectation
value) be qi. Referring to equation 6.16, what are the values of the c’s
as functions of time? How does this prove the statement at the end of
procedure 4?

12. For additional practice, solve problems 6.6, 6.7 and 6.9.
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