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Input Skills:

1. Unknown: assume (MISN-0-386).

Output Skills (Knowledge):

K1. Write the time-independent Schrodinger equation for the harmonic
oscillator in momentum space and the solutions corresponding to
n = 0, n = 1, and n = 2.

K2. Write the n = 0, n = 1, and n = 2 eigenstates in coordinate space
and explicitly verify that the coordinate space eigenfunctions are
the Fourier transforms of the momentum space eigenfunctions and
vice-versa.

K3. Define the raising and lowering operators a† and a.

Output Skills (Rule Application):

R1. Calculate the commutator of a† and a, write the Hamiltonian in
terms of a† and a, and deduce from this the eigenvalues of a†, a.

Output Skills (Problem Solving):

S1. Show that H(aψn) = (n − 1/2) h̄ω(aψn) and H(a†ψn) = (n +
3/2) h̄ω(a†ψn).

External Resources (Required):

1. E. E.Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).
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HARMONIC OSCILLATOR II

by

R. Spital

1. Introduction

At this stage we shall use the harmonic oscillator to illustrate many of
the concepts we have developed in previous units. We will also introduce
raising and lowering operators which are of great use in many areas of
quantum mechanics.

2. Procedures

1. The Schrodinger equation is (T +V )ψ = Eψ. To express the equation
in the momentum space representation, it is only necessary to express
T and V in that representation:

T =
p2

x

2m
, V =

1

2
kx2 = −1

2
kh̄2 ∂

2

∂p2
x

The equation is thus,

−h̄2k

2

∂2φ

∂p2
x

+
p2

x

2m
φ = Eφ

where φ is the time-independent wave function in momentum space.

2. a. The equation in procedure 1 is exactly of the same form as

−h̄2

2m

∂2ψ

∂x2
+

1

2
kx2ψ = Eψ

with k and 1/m interchanged. Use this observation and the known
coordinate space wave-functions to write the normalized momen-
tum space wave-functions for n = 0, 1 and 2. Substitute your
momentum-space wave functions into the Schrodinger equation and
verify that they are indeed the required eigenfunctions. Also verify
the normalization explicitly for n = 1.

b. From your previous work, you should know how φn(p) and ψn(x)
are related by Fourier transformation. Write down the connection.
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Verify this connection explicitly (in either direction) for n = 0, 1
and 2.

3. Define new dimensionless operators by

p ≡ px/h̄
√
α and q ≡

√
αx where α ≡ mω/h̄

The raising operator a+ is defined by

a+ ≡ 1√
2
(q − ip); a ≡ 1√

2
(q + ip)

is the lowering operator.

4. Show that [q, p] = i. Show that [a, a+] = 1. Express p and q in terms
of a+ and a. Show that the Hamiltonian is

1/2(p2 + q2)h̄ω = (a+a+ 1/2)h̄ω

Knowing the eigenvalues of H, deduce the eigenvalues of a+a. For this
reason a+a is sometimes called the “number operator.” BEWARE of
non-commuting operators in this computation.

5.
H(aψn) = (a+a+ 1/2)h̄ω(aψn) =

1

2
h̄ωaψn + h̄ωa+a2ψn =

1

2
h̄ωaψn + h̄ωa(a+aψn)− h̄ω[a, a+a]ψn =

1

2
h̄ωaψn + nh̄ωaψn − h̄ω[a, a+a]ψn

Use the commutator of Output Skill R1 to evaluate the commutator
and obtain the desired result. Follow a similar procedure for H(a+ψn).
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