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Input Skills:

1. Vocabulary: polynomial, Taylor expansion, power series.

2. Be able to take partial derivatives.

3. Unknown: assume (MISN-0-385).

Output Skills (Knowledge):

K1. Write the S-equation for the harmonic oscillator and transform it
to dimensionless form.

K2. Propose a form for the solution involving a decaying exponential
and a power series.

K3. Obtain recursion relations among the coefficients of the power se-
ries and show that the power series must terminate.

K4. Write down a rule for obtaining the Hermite polynomials through
a sequence of differentiations.

Output Skills (Rule Application):

R1. Use the requirement in K3 to determine the energy eigenvalues of
the Hamiltonian.

R2. Use the recursion relations to derive the first few Hermite polyno-
mials given that H0(q) = 1, H1(q) = 2q.

R3. Use the rule of K4 to obtaining the normalization of the har-
monic oscillator wave functions, and express these wave functions
in terms of the coordinate x. Also use the rule to show that any
two different harmonic oscillator wave functions are orthogonal.

R4. Obtain < x >, < Px >, < T >, and < v > from simple symme-
try arguments without integration and verify these results for the
lowest two energy eigenstates.

R5. Solve problems such as 5-18a.

External Resources (Required):

1. E. E.Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).
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HARMONIC OSCILLATOR I

by

R. Spital

1. Introduction

Next in our study of the one-dimensional S-equation, we come to
the harmonic oscillator. Here the potential is given by V = 1/2kx2,
where we recognize the constant k as the familiar Hooke’s law constant of
classical mechanics. Since nearly all potential wells can be approximated
by parabolas near their minima, the harmonic oscillator can be used to
approximate the low-lying energy levels of many systems. It is also of the
greatest importance in the theoretical treatment of statistical mechanics
and quantum field theory.

2. Procedures

1. Read section 5.5 through equation 5-20. Equation 5.20 is the required
dimensionless form.

2. Read the arguments leading to equation 5.22. The proposed form is
e−q2/2H(q). If the arguments for this form don’t seem convincing, then
regard it as simply a good guess. After all, the method by which one
finds the solution to a differential equation is irrelevant as long as the
solution works!

3. Read the remainder of section 5.5. The recursion relations are obtained
by demanding that the coefficients of each power of q vanish separately.

Make sure you understand the steps leading to equation 5.23. The
general result (for arbitrary k) can be proved by induction (try this if
you know how and are ambitious). You must be able to get the results
for k = 0, 1 and 2 on your own.

Read carefully the argument that the series must terminate. (Implicit
here is the requirement that the wave function must not diverge as
q ⇒∞. What is the physical reason for this?) Starting from

ak+2

ak
⇒ 2

k
,

you should be able to com lete the argument.
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4. The requirement that the series terminate means that ε− 1− 2k = 0,
or ε = 2k+1. Use the definition of ε to show that the possible energies
of the system are Ek = (2k + 1)h̄ω/2. This is more usually written as
En = (n + 1)h̄ω/2. Note that the ground state energy E0 = 1/2h̄ω.
This can be understood from the uncertainty principle in much the
same way as the fact that the “particle in a box” ground state also has
E0 6= 0.

Notice that both here and in the infinite square well, the boundary con-
ditions have led to quantization of the energy levels; i. e. the boundary
conditions can only be satisfied for certain discrete energies. This is in
sharp contrast to our classical intuition!

5. Read section 5.6 through the top of page 181. Then using a0 = 1,
a1 = 2, find H3, H4 and H + 5 from the recursion relations.

The “oddness and evenness” properties of Hn(q) remind us of the
similar properties of the square well wave functions. The parity of
a wave function is defined to be +1 if ψ(x) = ψ(−x) and −1 if
ψ(x) = −ψ(−x). It turns out that if V (x) = V (−x), it is always
possible to demand that an energy eigenstate be either even or odd
(have definite parity). This is because the parity operator, defined by
Pf(x) = f(−x), commutes with the Hamiltonian. We shall return to
this in MISN-0-388.

The remainder of section 5.6 is optional.

6. The rule is equation 5.35.

7. Read section 5.7 through equation 5.38. Make sure you understand
and can reproduce every step. Then derive eauation 5.40 by using the
definition of q in terms of x.

Two wave functions ψ1 and ψ2 are said to be orthogonal if and only if

∫
ψ∗

1(~r)ψ2(~r)dτ = 0 .

The orthogonality of the different eigenstates of the Hamiltonian is
no accident. It turns out that so long as the eigenstates correspond
to different energies, they must be orthogonal. (In fact this holds for
any observable operator.) More on this in Unit 8. The remainder of
section 5.7 is optional. As an exercise check the orthogonality and
normalizations of ψ0 and ψ1.
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8. Looking at the Hamiltonian, you see that it is completely symmetric
about x = 0 and px = 0; and moreover, no other values of x and
px have the same status. What then do you predict for < x > and
< px >?

Let p′ = px/
√
m and let q′ =

√
kx. Then the Hamiltonian is 1/2(p′2 +

q′2) and T = 1/2p′2, V = 1/2q′2. Note that H is completely symmetric
in p′ and q′. How then do you expect the energy to be apportioned
between T and V ? Use this to obtain < T > and < V >.

While the above arguments are not proofs (the eigenstates do not al-
ways have the symmetries of the Hamiltonian), there could be no phys-
ical justification for a breakdown of these arguments in this simple sys-
tem. Of course, the vindication of our intuition lies in the calculations.
Verify your results for ψ0 and ψ1.

9. To introduce the application of our results to molecular vibrations,
read section 5.8 and solve problem 5.18a.

To see how the harmonic oscillator is used to approximate more com-
plicated potentials, do the following exercise:

Let the potential V (x) have a minimum at x = x0. Expand V in a Tay-
lor series about x0 and identify the appropriate “spring constant” to
use if we wish to approximate V in the neighborhood of by a quadratic
potential. What will the constant term in the expansion do to the
oscillator energy levels?
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