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Input Skills:

1. Be able to integrate Gaussian function, exponential function,
trigonometric function.

2. Write down the integral that produces the Fourier transform of
an arbitrary fuction and the integral that transforms the Fourier
transform back to the original function (MISN-0-380).

Output Skills (Rule Application):

R1. Use Fourier transformation to find the frequency (wavelength)
spectrum of wave packets such as chopped sine and plane waves,
and obtain the corresponding uncertainty relations.

Output Skills (Problem Solving):

S1. Calculate the Fourier transforms of functions such as chopped lin-
ear functions.

S2. Solve qualitative uncertainty principle problems.

External Resources (Required):

1. E. E.Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).

2. D. S. Saxon, Elementary Quantum Mechanics, Holden-Day, Inc.
(1968).
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FOURIER ANALYSIS AND WAVE PACKETS

by

R. Spital

1. Introduction

In the first two units we have seen the need to treat photons and
particles as wave packets; i. e. as localizations of energy produced by the
superposition of waves of different frequencies and wavelengths. In this
unit we shall introduce the mathematical machinery needed to describe
wave packets. This machinery is called Fourier analysis.

Armed with this new machinery, we shall then study a simple exam-
ple of wave superposition in order to enhance our intuitive understanding
of wave packets and the uncertainty principle.

2. Procedures

1. The readings for this unit are on reserve for you in the Physics-
Astronomy Library. Ask for them as “the readings for CBI unit 383.”

2. (Output Skill S1) Perform the necessary integrations to solve problem 3
on page 54 of Saxon.

3. a. (Output Skill R1) Read section 4.8 of Anderson through the mid-
dle of page 138. Verify the integrations done and make sure you
can perform them without the aid of the book. Note that the un-
certainty relations 4.31 and 4.32 are only qualitative; that is, the
definition of ∆ω or ∆k is somewhat arbitrary. (There are more
rigorous ways to define ∆ω and ∆k but we shall not take them up
here.) The uncertainty products 4.31 and 4.32 are the minimum
values achievable at t = 0. As time goes on, the packet will broaden
in coordinate space so that these minimum values will increase.
(The momentum space width ∆p stays constant in time for a free
particle. See problem 4.16).

b. Read the remainder of section 4.8. (There is no difference between
Φ(k) and φ(k) and ignore the incorrect end of the sentence at the
top of page 139. Just end it after “normalize to a delta function.”)
φ(k) is the momentum space wavefunction. at t = 0. Using equation
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4.33 and the definition Ψk(x, t) = Aei(kx−ωt) show that:

φ(k) =
1√
2π

∫

∞

−∞

Ψ(x, 0)e−ikxdx

In general:

φ(k, t) =
1√
2π

∫

∞

−∞

Ψ(x, t)e−ikxdx

φ(k, t) is the time-dependent wave function in momentum space.
For a free particle h̄ω = p2/2m. Use this fact and equation 4.33
to find the function φ(k, t) in terms of φ(k) ≡ φ(k, 0). Then solve
problem 4.16. Use an equation covered in an earlier Output Skill
to solve problem 4.15. For additional practice with wave packets,
solve problem 4.18 and add this question:

c. Ψ(x) is the wave packet at t = 0. Write an integral expression for
Ψ(x, t) in terms of Ψ(x, 0) ≡ Ψ(x). (Hint: Use the inverted form of
the equation for φ(k, t) given above).

4. As an application of the uncertainty principle solve parts (a) and (b)
of problem 4.19. Use the relation ∆pi∆xi ≥ 1/2h̄ for each of the
three components (i = 1, 2, 3) of the position and momentum vectors.
The lower bound h̄/2 is achieved by Gaussian wave packets and is
the absolute minimum usually quoted in statements of the Heisenberg
uncertainty principle.

Acknowledgments

The author would like to thank Illinois State University for support
in the construction of this lesson.

A. Solving Gaussian Integrals

(only for those interested)

The function e−ax2

is-called a Gaussian function. It is frequently met
in physics and in statistics so the method of solution of its integral is
worthwhile knowing.

Method 1
Find the appropriate form in a Table of Integrals.1 For example, in A

1We recommend that you own a table of integrals, such as that above, or: Table of

Integrals, Series and Products, I. S. Gradshteyn and I. M. Ryzhik, Academic Press, New
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Short Table of Integrals, B.O. Peirce, Ginn & Co. (Xerox Corporation),
Boston (1929), one finds on page 63:

4 9 2 .

4 9 3 .

4 9 4 .

Γ

Γ

π

π

Hence:

x2 =
√

a/π

∫ +∞

−∞

x2e−ax2

dx.

Because the integrand is symmetric, this can be written:

x2 =
√

a/π2

∫ +∞

0

x2e−ax2

dx.

Now by No. 494 in Peirce’s book this becomes:

x2 =
√

a/π 2
1

4a

√

π/a =
1

2a
.

Method 2
Start with the square root of the square of the complete integral:

∫ +∞

−∞

e−ax2

dx =
√

∫ +∞

−∞
e−ax2 dx

∫ +∞

−∞
e−ay2 dy

=
√

∫ +∞

−∞

∫ +∞

−∞
e−a(x2+y2) dx dy

=
√

∫ +∞

0
e−ar2 2πr dr .

York and London (1965); or Mathematical Tables from the Handbook of Chemistry and

Physics, Charles Hougman, Chemical Rubber Publishing Co. (1931 and later dates).
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where the planar area integration has been re-expressed in polar coordi-
nates. Now let z ≡ r2 so that dz = 2rdr:

∫ +∞

−∞

e−ax2

dx =

√

π

∫ +∞

0

e−az dz =
√

π/a.

x2 =
∫ +∞

−∞
x2e−ax2

dx

= − d

da

∫ +∞

−∞
e−ax2

dx

= − d

da

√

π/a =
1

2a

√

π/a .
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