
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-370

COMPUTER PROGRAMMING

TECHNIQUES: A REVIEW

1

COMPUTER PROGRAMMING TECHNIQUES: A REVIEW

by

Robert Ehrlich, George Mason University

1. Introduction
a. Definition of a Computer Program .1
b. How To Construct a Computer Program1
c. Computers and Problem-Solving . 2
d. Practical Experience Is Necessary . 2

2. Flowcharts
a. Introduction .3
b. Elements of a Flowchart . 3
c. Sample Flowchart . 3

3. Running a Program on a Computer
a. Interactive Processing . 3
b. System Commands . 4
c. Compiling or Interpreting a Program . 4
d. Compiler or Interpreter Errors .5

4. Debugging a Program
a. Introduction .5
b. Program Bugs May Be Subtle . 5
c. Trace Your Program’s Flow .6

5. Common Programming Errors
a. Use of an Array Index Outside the Specified Range 6
b. Infinite Loops . 6
c. Failure to Bypass the Unselected Branch7
d. Division by Zero . 7
e. Argument of a Function Outside the Allowed Range 8
f. Data Not Read Properly . 8

6. Precision of Computations
a. Finite Word Size Limits Precision . 8
b. Internal Round-Off Error . 8
c. Double and Triple Precision Calculations 9
d. Round-Off In Program Output . 9

Acknowledgments .9

2

ID Sheet: MISN-0-370

Title: Computer Programming Techniques: A Review

Author: R. Ehrlich, Physics Dept., George Mason Univ., Fairfax, VA

Version: 2/1/2000 Evaluation: Stage 0

Length: 1 hr; 16 pages

Input Skills:

1. Vocabulary: function (in Glossary).

Output Skills (Knowledge):

K1. Vocabulary: array, program, algorithm, flowchart, source pro-
gram, machine language, compilation, floating point, double pre-
cision, triple precision, round-off error, word.

K2. List the steps usually followed in constructing a computer pro-
gram.

K3. State the meaning of the five standard symbols used in construct-
ing flowcharts.

Output Skills (Rule Application):

R1. Construct a flowchart for a simple set of operations to be pro-
grammed as computer code.

Output Skills (Problem Solving):

S1. Given an algorithm or a flowchart representing a series of opera-
tions, recognize and correct each of these common programming
errors: use of an array index outside specified range, infinite loops,
failure to bypass the unselected branch of a decision, division by
zero, argument of a function outside the allowed range, data not
read properly.

Post-Options:

1. “Review of Elementary FORTRAN” (MISN-0-346).

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4

MISN-0-370 1

COMPUTER PROGRAMMING TECHNIQUES:

A REVIEW

by

Robert Ehrlich, George Mason University

1. Introduction

1a. Definition of a Computer Program. A computer program is a
coded list of instructions that “tell” a computer how to perform a set of
calculations or operations. These instructions are fed into the computer
from a magnetic disk, a keyboard or some other medium. Usually, instead
of carrying out or executing each separate instruction as it comes in, the
computer temporarily stores all the instructions in memory. At a later
time it retrieves the instructions from its memory one at a time and
executes them. All the operations that a computer performs for you are
specified by a computer program, and there are a number of steps involved
in going from the problem statement to the program.

1b. How To Construct a Computer Program. In order to create
a computer program one normally follows these steps:

1. Define the Problem: State in the clearest possible terms the problem
you wish to solve. It is impossible to write a computer program to
solve a problem that has been ambiguously or imprecisely stated.

2. Devise an Algorithm: An algorithm is a step-by-step procedure for
solving the problem. Each of the steps must be a simple operation
which the computer is capable of doing. A universally-used rep-
resentation of an algorithm is a “flowchart” or “flow diagram,” in
which boxes representing procedural steps are connected by arrows
indicating the proper sequence of the steps. In many problems you
will need to define a mathematical procedure, expressed in strictly
numerical terms since the use of computers to do higher level ana-
lytic processes such as solving algebraic equations or doing integrals
in a non-numerical fashion is relatively limited.

3. Code the Program: The steps in an algorithm, translated into a
series of instructions to the computer, comprise the computer pro-
gram. There are many languages in which computer programs can
be coded, each with its own syntax, vocabulary, and special features.

5

MISN-0-370 2

One of the most widely used languages for scientific applications is
FORTRAN. Other languages such as BASIC and PASCAL are also
available on many computer systems.

4. Debug the Program: Most programs of any length don’t work prop-
erly the first time they are run and must therefore be “debugged.”
Often, during the debugging phase, errors and ambiguities in the
original statement of the problem reveal themselves, calling for ba-
sic revisions in the solution algorithm.

5. Run the Program: After the program has been fully debugged you
run it, possibly using many sets of input data. This step may take
anywhere from a few seconds to many hours depending on the com-
plexity of the problem and the speed of the computer.

6. Analyze the Results: Often the output from a computer program
requires considerable further analysis. In some cases, even though
the program worked perfectly, you may find that you solved the
“wrong” problem. There is an acronym well known to computer
users: GIGO, which stands for “garbage in, garbage out.”

1c. Computers and Problem-Solving. Clearly, the use of a com-
puter does not in any way diminish our need for a thorough understanding
of the nature of the problem we wish to solve or the underlying mathemat-
ical analysis. In fact, from the preceding discussion of the steps necessary
to create a computer program, it should be clear that in order to write
the program we must actually know how to solve the problem without a
computer! That is, once we devise an algorithm, we could in principle
perform each operation in sequence by hand and arrive at the solution.
However, in practice many algorithms have so many steps that only a
computer, which can do perhaps millions of arithmetic operations per
second, can perform all the operations without error and in a reasonable
amount of time.

1d. Practical Experience Is Necessary. In order to become pro-
ficient at writing programs and making them work, practical experience
is very important for the beginner - even before understanding the finer
points. Beginning computer programmers can make the mistake of want-
ing to understand everything about a computer language before attempt-
ing to write and run a program. That point of view can be an obstacle to
achieving the better understanding obtained through experience.

6

MISN-0-370 3

2. Flowcharts

2a. Introduction. Flowcharts or flow diagrams are important tools in
writing a computer program. A flowchart allows you to plan the sequence
of steps in a program before writing it. The flowchart serves as a visual
representation which many programmers find indispensable in planning
any program of at least moderate complexity.

2b. Elements of a Flowchart. A flowchart consists of a set of boxes,
the shapes of which indicate specific operations. The separate boxes are
connected with arrows to show the sequences in which the various oper-
ations are performed. We use these standard symbols:

rectangle: Any processing operation except a decision.

diamond: A decision operation.

parallelogram: An input or output operation.

oval: The beginning or ending point of the program.

arrow: The direction of flow from one operation to
the next. Every operation box must have at
least one incoming or outgoing arrow. Any
arrow leaving a decision box must be labeled
with the decision result which will cause that
path to be followed.

small circle: A connection between two points in a
flowchart, where a connecting arrow would be
too clumsy. A reference point or numbered
statement.

2c. Sample Flowchart. An example of a flowchart is shown, in Fig. 1,
for a program which uses the quadratic formula to compute the two roots
of a quadratic equation. For a program as simple as this one, most expe-
rienced programmers would not draw a flowchart.

3. Running a Program on a Computer

3a. Interactive Processing. The basic computer system is interac-
tive use from a terminal. With interactive processing the user enters input
and receives output directly at a computer terminal. It is necessary to
become familiar with a number of system commands which instruct the

7

MISN-0-370 4

Begin

Specify A,B,C

Print roots

End

Calculate X from

X = -b ±Öb2 - 4AC

2A

Figure 1. A flowchart for a program to compute the two
roots of a quadratic equation.

computer about tasks the user wishes to have performed.

3b. System Commands. System commands, somewhat like the
statements of a computer program, are instructions to the computer.
However, they are not part of a programming language and they vary
from one computer to another. Typical examples of system commands
include instructions to load a specific program into memory, to start ex-
ecution of the program, to print a file on a printer, and to sign-on or
sign-off a terminal.

3c. Compiling or Interpreting a Program. Before the computer
can execute a program written in a high-level language such as FORTRAN
or BASIC, the program must first be “compiled” or “interpreted,” a pro-
cess wherein the computer converts the FORTRAN or BASIC statements
of the program into a set of “machine language” instructions. Each pro-
gram statement is thereby broken up into many elementary operations by
means of a utility program called a “FORTRAN compiler” or a “BASIC
interpreter.” For example, the compiler would reduce the FORTRAN
statement

X = 2.0∗A∗∗2/B

8

MISN-0-370 5

or the BASIC statement

X = 2.0∗Aˆ2/B

into a series of elementary operations: find the values of A and B, multiply
A by itself, multiply the result by 2.0, divide that result by B, store that
result in X.

3d. Compiler or Interpreter Errors. When the computer converts
a program into machine language, it may uncover errors in some of the
program statements and print out a message to this effect. If the com-
puter converts a program without finding any errors, the machine lan-
guage version of the program is loaded into memory (automatically on
many computers), and the computer attempts to execute the program. It
sometimes happens that due to some error in the program that was not
detected during the conversion process, the computer is unable to execute
a program. In this case, the computer may report an error message and
abort the execution, or it may simply “hang” and not be able to proceed.
Even if the computer does execute the program and produce results as
expected, there is no guarantee that the results are correct. There are
many types of errors that you may make in writing a program or entering
it into the computer that will not result in any errors that the computer
can detect.

4. Debugging a Program

4a. Introduction. Most programmers find that their programs do not
work properly the first time they are run. In fact, it is not at all unusual for
the debugging of a program to require considerably more time and effort
than was required to write the program in the first place. Sometimes the
final correct version of the program bears little resemblance to the original
version! This is largely due to the many different kinds of errors that can
be made in writing a program.

4b. Program Bugs May Be Subtle. While the computer can detect
some types of errors in your program and alert you to them, there are other
kinds of errors (the most difficult to find), which do not give any obvious
indication of anything wrong - except that the answer is not correct. For
this reason it is important to take a very skeptical attitude toward the
results of a computer calculation, checking it whenever possible by a hand
calculation. In cases where this is impractical, check for:

9

MISN-0-370 6

1. Internal consistency - Often calculations can be done more than one
way. Do the answers obtained using different methods agree?

2. Reasonableness - Often by making simplifying assumptions, an es-
timate to the answer can be found. How does the computed result
compare with the estimate?

3. Limiting cases - When a calculation is done involving parameters
that must be assigned numerical values, sometimes the result is
obvious for certain numerical values of certain parameters. Are the
computed results for these limiting cases correct?

4c. Trace Your Program’s Flow. It cannot be overemphasized that
you should not grant automatic validity to the results of a computer
calculation - always check them in some way or other. If you suspect
that an error is present in a program, the general approach in trying to
locate the error is to go through the program step by step to see how
the computer obtained its results. The idea is to assume nothing, but
simply follow each instruction mechanically. In some cases the error may
be due to something trivial, like a typo (perhaps you accidentally typed
the letter “O” when you intended to type the number “0”), or possibly
you inadvertently left out a line.

5. Common Programming Errors

5a. Use of an Array Index Outside the Specified Range. When-
ever an integer variable is evaluated from some mathematical expression
and then is used as an array index, we must be very careful that the form
of the expression never causes the index to go outside its permitted range.
This very common mistake can occur in a number of ways, one of which
is illustrated here:

J = K2 sin(Y/Z), and F (J) = 1.0

In the present example, we are certainly in trouble if Y and Z assume
values that make sin(Y/Z) negative or zero.

5b. Infinite Loops. An infinitely repeating loop will occur any time
the exit from a loop depends on some condition which is never satisfied.
An example of an infinite loop is illustrated in the program in Fig. 2.
This program is supposed to calculate and print a table of values of the
function ex for x = 0, 1, 2, ..., 10. When the variable X is incremented

10

MISN-0-370 7

X=0.
10 E=EXP(X)

WRITE(3,30)X,E
X=X+1.0
IF(X-10.0)10,20,10

20 CALL EXIT
30 FORMAT(2F10.5)

END
Figure 2. An example of an
infinite loop.

by 1.0 each time through the loop, the result is only accurate to some
specific number of significant figures. Thus, on the tenth time through
the loop the binary-computed value ofX might be 9.9999999351... instead
of exactly 10.0, so that the decision operation never causes the program
to branch out of the loop to the end of the program. One solution is to
test whether the quantity

ABS(X−10.0)−0.0001

is positive, negative or zero. The program would branch out of the loop
when X differs from 10.0 by no more than 0.0001.

5c. Failure to Bypass the Unselected Branch. As an example of
this error let us assume that we wish to calculate the value of C using a
different formula depending on the value of the variable A. If the value of A
is negative then the program branches one way and calculates C according
to the intended formula. If the value of A is positive or zero the program
branches another way and calculates C according to a different formula.
However, the program then immediately recomputes C according to the
wrong formula which we really intended to bypass for non-negative values
of C.

5d. Division by Zero. If this mathematically improper operation is
attempted in a program, the result depends on the particular computer:
some computers cause an error message to be printed but many do not.
If no error message is printed, the computer may take the value to be

IF(A)1,2,2
1 C=D+2
2 C=D+2+E
3 CONTINUE

Figure 3. An example of fail-
ure to bypass the unselected
branch in a decision.

11

MISN-0-370 8

some arbitrary number (possibly zero, one, or the largest number that
can be defined on the particular computer) in order not to terminate the
program. One way to avoid a division by zero is to test the divisor before
performing the operation. If the divisor is found to be zero you may wish
to either stop the program, or alternatively print out a message to that
effect and simply bypass that particular step. An alternative procedure
is to modify the divisor in some way so that it is never zero.

5e. Argument of a Function Outside the Allowed Range. The
most obvious example of this problem is an attempt to use the square
root function with a negative argument. Other functions, such as the
exponential, also have limitations on the range of values the argument may
assume. (In the case of the exponential function, the range is dictated by
the largest (or smallest) number that can be represented on the particular
computer). As in the case of a division by zero, many computers do not
print an error message if the argument of a function is outside the allowed
range.

5f. Data Not Read Properly. Given the complexities of the rules
concerning input statements, it sometimes happens that the format of
numbers on a data card or line does not exactly agree with that specified
in the relevant input statement. In such a case, the computer may read in
incorrect values for certain quantities. The best way to guard against this
possibility is to use an “echo check” in a program, which means: print out
the input quantities right after they are read in, before any calculations
are done using them.

6. Precision of Computations

6a. Finite Word Size Limits Precision. Numbers are represented
in the computer by binary “bits” grouped into “words” (a fixed number of
bits). Due to its finite word size, the computer cannot perform “floating
point” (non-integer) arithmetic operations and obtain exact results. For
example, if the computer has a word size equivalent to eight significant
figures, then the value computed for the quotient 7.0/2.0 is only correct
to eight figures. Note that even though the exact answer 3.50000... has
all zeros after the second figure, an inaccuracy arises, since, on most
computers, numbers are represented internally using the binary rather
than the decimal system.

6b. Internal Round-Off Error. Most decimal numbers (base 10)
suffer a loss of precision (“round-off error”) when the computer converts

12

MISN-0-370 9

them to binary numbers (base 2) even before the numbers are used in
arithmetic operations. In most computations, the loss of precision means
that the final result may be incorrect after the seventh or eighth figure,
which may be considered only a minor annoyance. Random accumulation
of round-off error due to a large number of arithmetic operations can cause
the final result to be inaccurate by a significant amount. Even a single
arithmetic operation can cause a large loss of precision, if, for example,
two numbers of nearly equal size are subtracted from one another.

6c. Double and Triple Precision Calculations. On most comput-
ers it is possible to specify that the number of significant digits for each
arithmetic operation be increased from its normal value. To accomplish
this, the computer stores each quantity in two or possibly three words of
memory, permitting it to double or triple the number of significant digits
(“double precision” or “triple precision”). If you suspect that the results
of a program are inaccurate due to round-off error, then it is advisable to
run the program again using double or triple precision.1 If you find that
the numerical results differ substantially between the original single preci-
sion run and the later double precision one, then in fact round-off error is
present. While the double precision result is generally more trustworthy
than the single precision one, it is possible for it to also be in error if the
two results are substantially different.

6d. Round-Off In Program Output. The number of digits in a
printed result is determined by the appropriate FORMAT statement in
FORTRAN, or PRINT USING statement in BASIC, and this can also
have “round off.” On a computer having a word size equivalent to eight
digits, the single precision result of the quotient 7.0/2.0, printed out to
four, eight, and twelve digits might be, respectively,

3.500 3.4999999 3.49999992174

In this example the digits after the eighth are meaningless, and, when
fewer than eight digits are printed, the least significant digit is rounded
off according to the value of the next (non-printed) digit.

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and Re-

1To see how to use double or triple precision in FORTRAN, see “Advanced Features
of FORTRAN,” (MISN-0-347).

13

MISN-0-370 10

search, through Grant #SED 74-20088 to Michigan State University.

14

MISN-0-370 ME-1

MODEL EXAM

1. Construct a flowchart for the simple computer program below using
standard flowchart symbols.

PROGRAM MULTIPLY 100 READ(’Value for N?’,N) M = N

* 5 WRITE(’N x 5 =’,M) IF (M - 5) 200,100,100 200

WRITE(’DONE’) END

2. (a) List the steps usually followed in constructing a sizeable computer
program. (b) Indicate which step is often the most time consuming,
and two reasons why this is so.

3. Identify the programming error(s) in the following code and correct
the program in a simple manner.

PROGRAM EVALUATE I = 0 100 I = I + 1 WRITE(’FIRST VALUE

’,I) J = 1 / (I - 10) WRITE(’PRODUCES ’,J) IF (I - 10)

100,110,110 110 STOP END

15

MISN-0-370 ME-2

Brief Answers:

1.
Begin

M .LT. 5

Input N

Output M

Output “DONE”

End

M = N 5*

YES

NO

2. a. Programming Steps:

Define the problem

Devise an algorithm

Code the program

Debug the program

Run the program

Analyze the results

b. Debugging a large program often is the most time consuming step.
Errors in coding (typos) may be hard to track down. Ambiguities
or errors in the definition of the problem may also lead to erroneous
results and require a basic revision in the algorithm.

3. Division by zero will occur when I = 10. Insert a statement such as

IF I = 10 GOTO 110

before performing the division.

16

