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THE APPROACH TO EQUILIBRIUM
by
Robert Ehrlich

1. The Second Law of Thermodynamics

la. Introduction. This module uses a computer simulation applicable
to several physical systems. The simulations involve the second law of
thermodynamics, also known as the entropy law. It will be of particular
interest to examine how well this law applies to systems of very small
numbers of particles.

1b. The Entropy Law: An Arrow of Time. One version of the
second law of thermodynamics states that the entropy of an isolated sys-
tem must either stay constant or increase. In other words, when things
are left alone, they either “coast” or “run down,” i.e., they tend to ap-
proach a steady equilibrium state. This principle, which conforms to our
everyday observations of complex systems, appears to be contradicted by
the behavior of simple systems which contain a small number of particles.
To illustrate the difficulty, let us consider a box partitioned in the middle
with a number of gas molecules all initially to the left of the partition. If
a small hole is made in the partition, some molecules enter the right half
of the box. If the number of molecules is very large, as is ordinarily the
case with a gas in a macroscopic box, then within the limits of accuracy of
our instruments, we always find that the system tends to approach equi-
librium, which in this case means equal pressures, or equal numbers of
molecules in each half of the box. (see Fig.9) The reverse process (start-
ing with equal numbers of molecules in each half and later finding all in
one half) is never observed. Thus, we can infer with (near) certainty the
time sequence of the pictures in Fig. la from the pictures themselves. It is
in this sense that we speak of the entropy law as singling out a particular
direction (arrow) in time.

1c. The Entropy Law: Dependence on N. The entropy law which
seems to establish a direction in time for complex systems (involving large
numbers of particles), fails to do so when the number of particles, N, is
small. Consider, for example, the same two compartment box now con-
taining a small number of molecules (Fig. 1b). If the left half of the box
initially contains six gas molecules, then due to their random motion we
would find that at some future time after the hole is made, the system
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Figure 1. Gas molecules in a partitioned box with two
compartments.

has reached the equilibrium state of three molecules in each half of the
box. However, it is not at all unlikely that at some still later time, due
to the random molecular motion, the initial state of all six molecules in
the left half of the box will recur, making it impossible to infer the time
sequence of the pictures in Fig. 1b from the pictures themselves. In fact,
using statistics we could determine how long, on the average, we would
have to wait for such a recurrence of the initial state. If a large num-
ber of molecules are in the box, such a recurrence of the initial state is
still expected, but only after a fantastically long time. Over any observ-
able time (say one human lifetime), large departures from the equilibrium
state, once it is reached occur with vanishingly small probability. Thus,
the thermodynamic principle that the entropy of an isolated system does
not decrease, or that the system can approach equilibrium but not depart
from it, must be understood on a statistical basis: this is what (almost)
always happens to systems of very many particles over an observable pe-
riod of time. Over a very long period of time, however, an isolated system
can depart from its equilibrium state by an arbitrarily large amount, the
magnitude of the departures from equilibrium being more readily observ-
able the longer the time period, and the fewer the system. For a large
number of molecules, N, we can meaningfully describe the process as an
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approach to equilibrium, as the molecules initially in one half gradually
spread through out the box. For small N, however, the “arrow of time”
defined by the entropy law is not well defined, and we no longer can speak
of an approach to equilibrium.

2. A Simulation Using Coins

2a. Overview. It is difficult to make directly the observations de-
scribed in the previous section because normally the number of gas
molecules in a box is so huge. In addition, the fluctuations for the case of
a small number of molecules in each half would require keeping track of
the motion of each molecule. We shall, therefore, describe an alternative
system involving coins which would be expected to behave in virtually
the same manner as the molecules in the box.

2b. A Coin Model of Molecules in a Box. Suppose we have N
coins on a tray. A coin which is face up (heads) represents a particle
in the left half of the box, and one which is face down (tails) a particle
in the right half. To represent a particle going through the hole in the
partition we turn over a coin selected at random. This assumes that it
is purely a matter of chance which of the particles, numbered 1,2, ..., N,
goes through the hole. Starting with all coins heads (all particles in the
left half of the box), we can follow the evolution of the N-particle gas by
repeatedly choosing a coin at random and turning it over. Since all the
coins are initially heads, if IV is large, it is likely that the first few turns
will result in an increase in the number of tails. In general, on any turn
of a randomly chosen coin, the chances of an increase in the number of
tails depends only on the fraction of all coins that are heads. Thus, the
tendency for the system to reach the equilibrium state of equal numbers
of heads and tails (equal numbers of particles in the two halves of the
box), is simply a consequence of the laws of statistics.

2c. Mathematics of the Coin Model. Let us use statistical con-
siderations to determine the manner in which this system approaches
equilibrium. We let n designate the number of tails after x randomly
chosen coins have been turned over. On the next turn, the probability py,
of a coin being turned from tails to heads is just the fraction of all coins
that are tails: pp, = f = n/N. The probability of a coin being turned
from heads to tails is therefore p; = 1 — pj,. Hence, on the average, the
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change in the number of tails on the next turn is given by

An:pt—phzl—ﬁ.

If Az randomly chosen coins are turned over at one time, instead of just

one, we have
2
An = (1 - Wn) Az. (1)

Treating n and z as continuous variables, and using differentials instead
of finite differences, we divide both sides of Eq. 1 by the factor (1 — 2n/N)

to obtain
dn

which can be integrated to give

=dx,

—gln(N —2n)=z+C.

We choose the constant of integration C' equal to —(N/2)InN, in order
to conform to the assumed initial condition n = 0 for z = 0 (all coins
initially heads). Solving for the fraction f = n/N, we obtain

f=n/N = % (1—6—2”/N). 2)
According to Eq. 2, the fraction of coins which are tails, on the average,
after = coins have been turned over is an exponential function of x which
approaches the equilibrium value of 1/2 for  — oco. If we were to plot
the fraction of coins that are tails, f = n/N versus z, based on the
results of an actual coin turning experiment, we would find an irregular
curve resembling, on the average, an exponential function with random
statistical fluctuation superimposed. The magnitude of the fluctuations
decrease as the number of coins increases. For a small number of coins
(or molecules) the relatively large fluctuations may completely obscure
any exponential approach to equilibrium, and in fact make the concept
somewhat meaningless.

2d. Simulation of Radioactive Decay. The same model using N
coins can be used to simulate the disintegration of a large number of
nuclei. Let a coin which is heads represent a nucleus that has not yet
disintegrated. The probability that any one nucleus disintegrates in any
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short time interval At is a constant pg, independent of how long the
nucleus has been in existence. To simulate the disintegration process, we
start with all coins heads (no nucleus yet disintegrated). We set up a
loop to step the time: t = 0, At, 2At, ..., nAt. For each value of the time,
we set up a loop over the N nuclei, j = 1,2,..., N. For each nucleus,
we test whether it has already disintegrated (j*" coin tails), and if so,
we skip this one and go on to the next. If the j* nucleus has not yet
disintegrated, we “give it a chance” to disintegrate by generating a random
number r, uniformly distributed from zero to one, and having the nucleus
disintegrate if r is less than pg. When the nucleus disintegrates, we turn
the j* coin over. After giving all N nuclei a chance to disintegrate for a
particular time interval, we compute the fraction of nuclei that have not
yet disintegrated f, and print out both its numerical value, along with a
line of characters for a plot of f versus time. We repeat the process for
each time interval, until all » time intervals have been treated (or until
all N nuclei have disintegrated).

3. Program for the Coin Model

3a. Introduction. The coin model is particularly easy to simulate on
a computer. The array Uy, ...,U;000, is used to record the state of each
of up to 1000 coins according to the convention:

U; = +1 means the 4t coin is heads,
U; = -1 means the j™ coin is tails.

To flip a random coin we need only generate a random number j and then
change the sign of the array element U;.

3b. Input. The program begins by reading numerical values for COINS
and TURNS, where

COINS = number of coins
TURNS = number of times to turn over coins
selected at random.

The program initially sets all the elements of the array U equal to +1 (all
coins initially heads). Then in a loop over k = 1,2, ..., TURNS, an integer j
is chosen at random between 1 and COINS, and the j*" coin is turned over
by simply reversing the sign of U;. The number of tails is stored in the
variable TAILS, so that by subtracting U; from TAILS each time a coin is
turned the program correctly accounts for changes in the number of tails.
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(It increases the number of tails by one if the coin is turned from heads to
tails and decreases it by one in the opposite case). The program computes
the fraction of coins that are tails, prints and plots the results provided
that this turn is one of 50 selected turns evenly interspersed between 1
and TURNS. The reason for only printing the results at 50 selected turns
is to get a single-page plot. Because of this, you should choose values for
TURNS that are integral multiples of 50. Once the loop over the specified
number of turns is complete, the program goes on to read another data
set if any remain to be read.

3c. Output. The output shown in Figs.2 and 3 was produced using
these numerical values for the parameters:

COINS TURNS
15 set 25.00 50.00
274 set 1000.00  3000.00

The random statistical fluctuations are much more pronounced when the
number of coins is small, as in the first case. Note that when a large
value for COINS is used, it is also necessary to use a large value for TURNS
if we wish to reach the equilibrium state. The value used for COINS on
the second data card (1000) is the largest allowed value due to the size of
the array U. While there is no such upper limit on the value of TURNS,
the amount of computation time will depend on this value. Recall that
the value chosen for TURNS should be an integral multiple of 50.

4. Procedures

4a. The Approach to Equilibrium. Run the program using values
for COINS in the range 25 to 1000, with appropriate values for TURNS. You
might try the following six pairs:

RUN COINS TURNS

1 25 50
2 25 50
3 100 200
4 100 200
) 1000 2000
6 1000 2000

10
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the initial state, after equilibrium has been reached.)

4c. Radioactive Decay Simulation. Modify the original (approach
to equilibrium) program, so that it uses the procedure outlined above
to simulate the process of radioactive decay. Run the program using a
number of values for the parameters:

Ny = Number of nuclei present at time t =0
At = time step

n = number of time steps
po = probability that a nucleus disintegrates in

time interval At.

Note that the probability pg is related to the nuclear mean life, T', which
appears in the formula for the predicted exponential time dependence of

f versus time:
N(t) = Noe t/T (3)

which should hold for large values of N. According to this formula after
a time t equal to the lifetime T, the fraction of nuclei which have not
yet disintegrated is 1/e. The relation between the probability po and the
mean life T is A

Po = 75 (4)

Another useful quantity is the half-life, T ;5. This is the time ¢ for which
N(t) = 1/2(Np). Using

1
N = 5No = Noe /T,
we easily find that:
Ty )y = Tin2 (5)

The exponential dependence of N(t) on time only holds for large values
of Ny, the number of original nuclei. For small values of Ny, we would
expect a curve that shows many statistical fluctuations. After you modify
the program in the manner described try running it using the following
input parameters:

Ng = 50

At = 1.0 hr
n = 50

po = .0277

13
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These values should result in a half-life T} /, = 25.0 hr, according to Eqgs. 4
and 5. See if that is what is found when the simulation is run. Remember
that several runs of a random process will give different values for each run.
Try 5 runs using the specified input parameters and empirically determine
the half-life for each, and compare with the expected value.

A. Fortran, Basic, C++ Programs
All programs are at
http://www.physnet.org/home/modules/support_programs
which can be navigated to from the home page at
http://www.physnet.org

by following the links: — modules — support programs, where the pro-
grams are:

m357plf.for, Fortran;
m357plb.bas, Basic;
m357plc.cpp, C++;
1ib351.h, needed Library for C++ program;

14
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MODEL EXAM

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.
(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and
(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

1. Submit your hand-annotated output that illustrates the coin-flipping
model of the approach to equilibrium. Be sure that it shows:

a. at least three values, in the range 25 to 100, for the number of coins;
the number of flips about twice that; and each run being done twice
with independent quasi-randomness.

b. (graphically) the extent to which the results check with an expo-
nential approach to equilibrium.

2. Submit your hand-annotated output that applies the coin-flipping
model to radioactive decay. Be sure that it shows:

a. that you made 5 runs with the parameter values: initial number of
systems, 50; time step, 1.0 hr; number of time steps, 50; probability
for each one of the undecayed nuclei to decay in 1.0 hr, 0.0277.

b. your deduction of the half life from the output in a), and its com-
parison with the expected value.

INSTRUCTIONS TO GRADER
If the student has submitted copies rather than originals of the computer

output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.

15
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