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MONTE CARLO EVALUATION

OF DEFINITE INTEGRALS

by

Robert Ehrlich

1. Integrals, 1-2 Dimensions

1a. Introduction. This module describes the Monte Carlo method for
the evaluation of some definite integrals. The exotic name of the method
arises from the use of random numbers in its execution. Briefly, the Monte
Carlo method for evaluating a definite integral involves determining the
fraction of a large number of randomly located points which lie under the
curve of the function to be integrated. This idea is illustrated in Fig. 1(a)
and (b), which is a graph of an arbitrary function f(x) which we wish to
integrate between the limits x = a1, and x = a2. The integral is equal to
the shaded area under the curve in Fig. 1(a). The Monte Carlo approach
is indicated in Fig. 1(b) where a number of random points are depicted
inside the dotted rectangle. Let:

A = area of dotted rectangle
N = number of randomly located points inside the rectangle
n = number of random points which lie under curve

(shown blackened)

The Monte Carlo approximation to the area under the curve can then
be obtained from:

a = fA

where f = n/N is the fraction of all points that lie under the curve.
Clearly the approximation improves as the number of random points in-
creases. Typically the method is implemented on a computer by gen-
erating pairs of pseudorandom numbers for the x,y coordinates of each
point.

1b. Area Inside a Closed Curve. The area inside a closed curve
can likewise be approximated by enclosing the curve by a rectangle and
computing the fraction of random points inside the rectangle which lie
inside the curve. This area is in effect equal to the integral of the function
f2(x)− f1(x) where f1(x) and f2(x) are the upper and lower portions of
the closed curve in Fig. 2.
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Figure 1. Evaluating an integral using the Monte Carlo
method.
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Figure 2. Evaluating
the area inside a closed
curve using the Monte
Carlo method.

1c. Surface Integrals In A Plane. The surface integral of a function
of two variables f(x, y) over an area S may be written as follows:

Q =

∫

S

f(x, y) dS . (1)

Surface integrals, however, are two-dimensional integrals and actually in-
volve successive integration over the two variables:

Q =

∫ ∫

S

f(x, y) dx dy . (2)

We may approximate Eq. (1) by the finite sum:

Q =

N
∑

j=1

fj(x, y)∆S , (3)

where the element of area is given by ∆S = S0/N , S0 being the total
area of the domain of integration (the rectangle in Fig. 2). To evaluate
Eq. (3) using the Monte Carlo method we simply generate N randomly
located points inside the rectangle in Fig. 2. Let (x, y)j be the coordinates
of the jth randomly located point. If the point lies inside the closed curve
we would add the contribution fj(x, y)∆S to the sum in Eq. (3); if the
random point lies outside the closed curve no addition is made to the sum.
In the special case: f(x, y) = 1, we would find that Eq. (3) yields the area
inside the closed curve, exactly as was the case in the one-dimensional
integral.
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1d. Surface Integrals Over Non-Planar Surfaces. Wemay use the
Monte Carlo method to approximate a surface integral over any surface
S:

Q =

∫

S

f(x, y, z) ds . (4)

As before Eq. (4) can be approximated by a finite sum:

Q =

N
∑

j=1

fj(x, y, z)∆S . (5)

A difference from the integral over a plane surface is that now the inte-
grand may be a function of three variables. In addition, the N random
points need to be chosen at random locations over the surface of integra-
tion S which is non-planar. An example will help clarify the procedure.
Suppose we wish to integrate a function over the surface of a sphere of
radius R. The function to be integrated may be expressed either in rect-
angular coordinates x, y, z or polar coordinates R, θ, φ, where θ is the
polar angle and φ the azimuth. The location of random points on the
surface of a sphere can be most conveniently specified in terms θ and φ.
In order that the random points be uniformly distributed over the surface
we would need to use:

φ = 2πr1 (6)

cos θ = 2

(

r2 −
1

2

)

(7)

where r1 and r2 are two random numbers uniformly distributed in the
interval (0, 1). It is only by choosing cos θ (not θ) from a uniform distri-
bution that random points will be uniformly distributed over the surface
of the sphere. To carry out the Monte Carlo integration, indicated in
Eq. (5), we would need to generate N random points and evaluate f(x, y)
at each of these points.

1e. Precision Of The Monte Carlo Method. Like any method of
numerical integration, the Monte Carlo method only can yield an approx-
imate result. In other numerical integration methods, such as Simpson’s
rule,1 the error typically decreases as the number of integration intervals,
N , increases according to N−1. The Monte Carlo method, converges on
the exact result as the number of random points, N , increases. The con-
vergence in the case of the Monte Carlo method is proportional to N−1/2.
This slower rate of convergence is a significant drawback to the Monte

1See “Numerical Integration” (MISN-0-349).
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Carlo method, since it means that higher N values (more computer time)
is needed to achieve the same precision. There are, nevertheless, several
advantages to the Monte Carlo method over more conventional numerical
integration methods that will become clearer in discussing integrals in
more than two dimensions.

2. More Than Two Dimensions

2a. Introduction. Suppose we wish to integrate some function
f(x, y, z) over the interior volume V of a closed surface of some specific
shape:

M =

∫

V

f(x, y, z) dV . (8)

This volume integral actually stands for the triple integral:

M =

∫ ∫ ∫

f(x, y, z) dx dy dz . (9)

The limits on each successive integral are determined by the specific shape
of the region V . This may result in difficult functions being introduced
into the next integrand as successive integrations are carried out analyt-
ically. This source of difficulty is completely bypassed when an integral
such as that in Eq. (8) is carried out in the Monte Carlo method. Equa-
tion (8) may be approximated by the finite sum:

M =

N
∑

j=1

fj(x, y, z)∆V (10)

The surface enclosing the volume V which is the region of integration is
itself encased in a rectangular box of volume V0 (see Fig. 3). In order to
evaluate Eq. (10) we need to choose N randomly located points inside the
box, and calculate fj(x, y, z) at each of the points j = 1, 2, ..., N . The
only contributions to the sum are from those points that lie inside the
volume V . The size of the volume element ∆V in Eq. (10) is given by
∆V = V0/N .

2b. Moments Of A Probability Distribution. One particular type
of function f(x, y, z) that often appears in a multiple integral is the prob-
ability density function ρ(x, y, z). This is the probability that x, y, z take
on values corresponding to the location of the volume element ∆V . The
function ρ(x, y, z) can also stand for the mass density or charge density

9
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Figure 3. Monte
Carlo method for
doing a volume
integral: N ran-
dom points are
chosen inside a
box. Only those
points which also
lie inside the vol-
ume of integration
(the shaded closed
surface) contribute
in Eq. (10).

as a function of position. We may define the nth moment of a three-
dimensional probability distribution according to:

Mn =

∫

xnρ(x, y, z) dV . (11)

This integral can be approximated by the finite sum:

Mn =
N
∑

j=1

xn
j ρj(x, y, z)∆V . (12)

2c. Moments Of A Mass Distribution. In the event that ρ repre-
sents a mass density rather than a probability density, then the prod-
uct ρ0∆V represents the mass ∆mj of one of N randomly located
point masses. (A similar statement would hold for point charges with
∆q = ρ∆V ). Thus, Eq. (12) may be written:

Mn =

N
∑

j=1

xn
j∆mj (13)
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The first three moments (n = 0, 1, 2) are of particular interest:

M0 =
N
∑

j=1

∆mj (14)

M1 =
N
∑

j=1

xj∆mj (15)

M2 =

N
∑

j=1

x2

j∆mj (16)

From the Monte Carlo evaluation of Eq. (14) we can obtain the mass of
a three-dimensional body of specified shape. Equation (15) yields the
x-coordinate of the center of mass, and Eq. (16) can be used to find the
moment of inertia. There are actually three moments of inertia (about
each of the three axes). The three center of mass coordinates and moments
of inertia are given by:

Center of Mass Coordinates:

xcm =
1

M0

∑

j

xj∆mj

ycm =
1

M0

∑

j

yj∆mj

zcm =
1

M0

∑

j

zj∆mj (17)

Moments of Inertia:

Ixx =
∑

j

(y2

j + z2

j )∆mj

Iyy =
∑

j

(x2

j + z2

j )∆mj

Izz =
∑

j

(x2

j + y2

j )∆mj (18)
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2d. Illustration Of The Monte Carlo Method. A specific illus-
tration may help explain the use of these equations in the Monte Carlo
method. Assume that we wish to find the coordinate of the center of
mass using Eq. (17). This would necessitate generating N randomly lo-
cated points inside the rectangular box that encloses the object of inter-
est (see Fig. 3). For each point a value of its mass ∆mj is calculated
from ∆mj = ρj(x, y, z)∆V where ρ(x, y, z) is some specified mass den-
sity function (that might be a constant), and ∆V = V0/N where V0 is
the volume of the rectangular box. Random points that fall outside the
boundaries of the object are taken to have ∆mj = 0, when calculating
the sum

∑

yj∆mj . In the case of an object of constant density we may
use:

∆mj =
M0

n
, (19)

whereM0 is the mass of the object and n is the number of random points
that fall inside its boundaries. It is interesting to recall that the repre-
sentation of an object by a random collection of mass points is actually
a closer approximation to the atomic nature of matter than the usual
mathematical view of a continuous solid. The number of random points
used in Monte Carlo calculations, however, never even comes close to the
number of discrete atoms in a normal piece of matter, due to limitations
of computer time.

2e. Integrals In More Than Three Dimensions. Although phys-
ical space only has three dimensions, mathematically we are sometimes
faced with more than three variables. It is easy to do higher-dimensional
integrals using the Monte Carlo method. For example, let us consider
the case of a ten-dimensional sphere called a “hypersphere” of constant
density. In three dimensions the interior of a sphere is defined by:

x2 + y2 + z2 ≤ R2
0, (20)

where R0 is the radius. Likewise we may define the interior of a ten-
dimensional hypersphere of radius R0 from

x2
1 + x2

2 + ...+ x2
10 ≤ R2

0. (21)

Let us imagine the ten-dimensional hypersphere is encased in a unit side
ten-dimensional “hypercube” having unit volume and density. It is quite
easy to find the mass or volume of the ten-dimensional hypersphere by
generating random points (of ten coordinates each) inside the hypercube.
Each random point is then tested to see if it is inside the hypersphere

12
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Figure 4. The object
used in the present version
of the program.

according to Eq. (21). Those points which are inside, contribute a mass
∆m = ρ∆V =M/N to the total, whereM is the mass of the unit density
hypercube, and N is the total number of random points. Outside random
points contribute nothing. The total mass of the hypersphere is found
from the sum over all point masses. The result is that the ratio of the
volume of a hypersphere to that of the hypercube that just encloses it
equals the fraction of the random points which lie inside the hypersphere,
f = n/N . Doing a multiple integral by conventional numerical integra-
tion methods generally involves allowing each variable to take on a range
of values. For a ten-dimensional integral if each variable takes on only 2
values we would need to calculate the integrand at 210 terms. This repre-
sents one major advantage of the Monte Carlo method over conventional
integration methods for multiple integrals in many dimensions.

3. Program to Calculate Integrals

3a. Introduction. A program has been written to calculate the mass
and center of mass of an object, as described in Section 2. For the sake
of definiteness, the object is chosen to have a specific shape: a sphere
of radius R = 0.5 with a cylindrical hole of radius r = 0.3 through the
center of the sphere (see Fig. 4). We assume that the sphere is enclosed
by a cube one unit on a side centered at the origin. In that case, we
may use triplets of pseudorandom numbers (r1, r2, r3) to calculate the

13
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coordinates (x, y, z) of random points according to:

x = r1 −
1

2

y = r2 −
1

2

z = r3 −
1

2

A random point would be considered to be inside the object provided
that:

x2 + y2 + z2 < 0.52 (22)

and
x2 + y2 > 0.32. (23)

Equation (22) checks that the point is inside the sphere, and Eq. (13) that
it is not inside the hole. In the present version of the program the density
of the object is considered to be constant. Random points inside are taken
to have ρ = 1.0 and those outside ρ = 0. Since the volume of the encasing
cube is also assumed to be unity, this means that the calculated mass of
the object will be equal to f , the fraction of random points that lie inside.
The program also calculates the x, y, and z coordinates of the center of
mass as described in Paragraph 2c.

3b. Input. The program begins by reading numerical values for N and
NRUNS, where

N = the number of randomly located points to
use in calculating the mass and center
of mass coordinates, and

NRUNS = the number of times to repeat the whole
calculation using the same value of N.

The reason that the calculation is repeated some number of times (NRUNS)
is that when random numbers are used the results depend to some extent
on the particular random numbers chosen. It is, therefore, of interest to
see how much variation occurs from run to run as a direct measure of
the precision of the method. The output listed was obtained using the
following input parameters:

1st case: N = 250 , NRUNS = 5
2nd case: N = 1000 , NRUNS = 5

14
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3c. Sample Output.

N=250.00 NRUNS=5.00

RUN 1 MASS = .252
RUN 2 MASS = .264
RUN 3 MASS = .292
RUN 4 MASS = .248
RUN 5 MASS = .236
AVERAGE MASS .258

DEVIATION .019

C.M. COORD’S X= .071 Y= .069 Z= .006

C.M. COORD’S X=-.014 Y= .030 Z= .002

C.M. COORD’S X=-.052 Y= .024 Z=-.008

C.M. COORD’S X=-.007 Y= .006 Z= .002

C.M. COORD’S X= .095 Y=-.019 Z=-.014

AVERAGE COORDINATES .019 .022 -0.002

DEVIATIONS .055 .029 .008

N=1000.00 NRUNS=5.00

RUN 1 MASS = .264

RUN 2 MASS = .287

RUN 3 MASS = .270

RUN 4 MASS = .281

RUN 5 MASS = .275

AVERAGE .275

DEVIATION .008

C.M. COORD’S X=-.002 Y= 0.032 Z= .000

C.M. COORD’S X= .007 Y=-0.010 Z=-.008

C.M. COORD’S X= .035 Y=-0.003 Z= .010

C.M. COORD’S X= .002 Y=-0.027 Z=-.012

C.M. COORD’S X=-.007 Y=-0.010 Z= .004

AVERAGES .007 -0.004 -0.001

DEVIATIONS .015 .020 .008

We note that the x, y, z-coordinates of the center of mass are, as expected
close to zero, due to the symmetrical shape of the object. The masses for
each run are all reasonably close to the expected value 0.268. (The mass
of a sphere of radius a, which has a cylindrical hole of radius c, is given
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by

M =
4

3
π (a2 − c2)3/2ρ ;

a = 0.5, c = 0.3, ρ = 1.0.

The computed rms deviations for each series of runs is a measure of the
errors in each quantity. The differences between the computed values and
the expected values of the mass and the center of mass coordinates are,
in most cases, less than the rms deviations. (The laws of statistics predict
this should be the case about 68% of the time). The laws of statistics also
predict that the rms deviations should decrease as the number of random
points N increases, according to the formula N−1/2. Thus, we should find
the standard deviations for N = 1000 are about half those for N = 250.
This is roughly borne out by the results. The agreement would generally
be better if a larger number of runs was used in each case.

4. Procedures

4a. Calculated Mass And Center of Mass Coordinates. Run
the program using N = 100 and NRUNS = 50. Make a histogram showing
the number of runs in which the calculated mass lies in each of a number
of equal-size intervals. Do the same for the calculated x and y center of
mass coordinates, combining the values for both coordinates in one plot,
instead of making two separate plots. Both histograms should have a
shape which resembles a Gaussian distribution, and the latter histogram
should be centered near zero, if the random number generator is working
properly. The mass distribution should be centered at the expected value
0.2681.2 For both distributions find the width which in each case includes
roughly 68 percent of the cases on both sides of the expected value. The
standard deviation σ is roughly half of that full width.

4b. Variation Of Results With N. Repeat the procedure suggested
in the preceding problem using other values of N, say N = 25 and N = 400.
Compare the distributions you obtain in these two cases with the original
ones. In particular, see if the predicted N−1/2 dependence of the error in
each quantity (determined from the width of the distribution) appears to
be valid.

4c. Objects Of Other Shapes. Modify the program so that it com-
putes the mass and center of mass coordinates for objects of other shapes.
For example, you can try the shapes shown in Fig. 5. Be sure to select

2Volume = (4/3)π(R2
− r2)3/2 where R = sphere radius, r = cylinder radius.

16



MISN-0-355 13
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Figure 5. Sample objects for which to calculate the mass
and center of mass.

random numbers for each coordinate between limits which define a rect-
angular block that just encloses the object. Use a large enough N to get
a reasonably accurate result, and get an estimate of the error by using
NRUNS > 1.

4d. Surface Integrals. Modify the program to evaluate an integral
on the surface of a sphere, as described in Paragraph 1d. To do this
you will need to generate N random points having angular coordinates θ
and φ defined by Eqs. (6) and (7). Try integrating the function f(θ, φ) =
1 + cos2 θ over the surface of a sphere of unit radius using Eq. (5). The
surface element ∆S in Eq. (5) is given by ∆S = S/N where S is the total
surface area of the sphere and N is the number of random points. How
close does your result come to the expected value of 1.5 using different
values of N?
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B. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:

m355p1f.for, Fortran;
m355p1b.bas, Basic;
m355p1c.cpp, C++;

lib351.h, needed Library for C++ program;
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MODEL EXAM

1. See Output Skills K1-K2.

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

3. Submit your hand-annotated output for a Monte Carlo calculation of
the mass and CM coordinates for a sphere with a hole through its
center. Be sure it shows:

a. a histogram showing the number of mass values that lie in each of
a number of equal-sized intervals, with 50 values and 100 Monte
Carlo points per value.

b. a single histogram showing both the number of the x and the y CM
coordinates that lie in a number of equal-sized intervals, with 50
values and 100 Monte Carlo points per value.

c. for a) and b), a discussion of what distributions are expected about
what points and a demonstration of how close your Monte Carlo
values came to them.

d. a comparison of the results from using three numbers of Monte
Carlo points, N, everything else kept fixed, and the extent to which
the error values have the predicted dependence on N.

4. Submit your hand-annotated output for the mass and CM coordinates
for an object from Fig. 5 (or equivalent in difficulty). Be sure it shows
a deduced estimate of error.
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5. Submit your hand-annotated output showing Monte Carlo integration
of a function over the surface of a unit sphere. Be sure it shows how
close your result came to the exact value.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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