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WAVES IN TWO DIMENSIONS

by

Robert Ehrlich

1. Overview

In this module the computer is used to graphically illustrate and
analyze a number of situations involving waves in two dimensions. A
program accompanying the module can generate an intensity plot of the
resultant wave in each of these cases:

1. A single stationary point source

2. A single moving point source (Doppler effect and shock waves)

3. Two coherent point sources (interference).

The computer produces the intensity plots using the technique of intensity
scaling.1 In addition, the FORTRAN version of the program, and the
first of the two C++ versions, use “overprinting” in which several lines of
characters are printed on top of each other in order to introduce various
gradations in darkness.2 The overprinting feature is not available on some
printers. Accordingly, the BASIC version of the program, and the second
C++ version, do not require overprinting.

2. Point Sources of Waves

2a. Point Sources of Waves in a Plane. An example of a wave
in two dimensions is the surface wave produced when a small object is
dropped in calm water. The amplitude of the wave, which in this case is
the vertical displacement of the water level from its equilibrium position,
can be expressed as some function of two spatial coordinates x, y, z, and
the time t. If the object bobs up and down in simple harmonic motion,
it produces a sinusoidal wave which expands outward in all directions on
the surface of the water (the xy-plane). As in the case of any transverse
wave, the oscillatory motion of any point in the medium is perpendicular
to the direction of propagation of the wave at that point.

1See “Advanced Printer Graphics and Scaling” (MISN-0-348).
2The printer that you use should be moderately fast. Otherwise it will take too

much time to produce each plot.
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Figure 1. Computer gen-
erated intensity pattern for a
point source of waves.

2b. Expression for the Wave Amplitude. If we were dealing with a
plane wave travelling along the +x direction we could write the following
expression for the wave amplitude as a function of x and t:

A(x, t) = Ao sin

[

2π

λ
(x− vt)

]

(1)

Where λ is the wavelength and v is the wave speed. Our interest, how-
ever, will be primarily in waves emanating from a point. There are two
necessary modifications of Eq. (1) in this case:

a. The variable x must be replaced by the variable r = (x2+y2)1/2 which
is the distance from the source, and

b. the constant Ao must be replaced by S/r where S is the strength of
the source of waves.

With these two changes we find that the amplitude of the wave at any
point (x, y) and time t is given by

A(x, y, t) =
S

r
sin

[

2π

λ
(r − vt)

]

(2)

At any particular instant of time, say t = 0, the wave is represented by
the function

A(x, y) =
S

r
sin

[

2π

λ
r

]

(3)

6



MISN-0-353 3

Figure 2. Computer gen-
erated intensity pattern for a
moving point source of waves.

This wave amplitude can be represented by the computer-generated plot
shown in Fig. 1 in which the darkness of the pattern at each point is
an indication of the intensity, or square of the wave amplitude, at that
point. (The procedure for doing this will be described). Note that as
required by Eq. (3), the wave amplitude is zero on concentric circles of
radii r = nλ/2, n = 0, 1, 2, ..., so that the distance between every other
zero-amplitude circle is one wavelength. The alternating regions of posi-
tive and negative amplitude are indistinguishable in Fig. 1 since it is the
intensity, not the amplitude, that is represented. The figure does indicate
both the sinusoidal oscillations as a function of r and the more gradual
inverse-square dependence of intensity on r, in accordance with the form
of Eq. (3). A wave front may be defined as the set of all points on the
wave having the same phase. This means that the argument of the sine
in Eq. (3) is the same for all points on a wave front. For a point source
at rest, the wave fronts must therefore form a set of concentric circles
spaced one wavelength apart, expanding outward at the wave speed v.
Both Fig. 1 and Eq. (3) apply only to the case of a point source which is
at rest as far as motion in the xy-plane is concerned.

2c. Waves from a Moving Source. If the source is not at rest the
wave fronts must still be circular because the waves expand outward at
the same velocity in all directions. However, the circles are not concentric,
since adjacent circular wave fronts correspond to waves emitted from the

7

MISN-0-353 4

source at different times, the center of each circle being the position of
the source at the time that wave front was emitted from the source. For
a source traveling at constant velocity, the center of each wave front is
displaced by a constant amount from the one before. The computer-
generated plot of Fig. 2, which shows a snapshot of the wave pattern for
a uniformly moving source, illustrates this.

3. The Doppler Effect

3a. Introduction. The change in frequency which occurs when a wave
source is in motion with respect to an observer is known as the “Doppler
effect”. The frequency detected by the observer is higher (lower) than
that for a stationary source, when the source moves toward (away from)
the observer. The Doppler effect also occurs when the observer, rather
than the source, is moving, although this case will not be included in our
discussion.

3b. Cause of the Doppler Effect. The cause of the Doppler effect
can be easily understood with the aid of Fig. 2. Recall that the frequency,
according to an observer, is the number of wave fronts reaching him per
unit time. When a source approaches an observer (observer to the right
of the source in Fig. 2), the spacing between wave fronts is less than what
it would be if the source were at rest. Similarly, if a source recedes from
an observer, the spacing between wave fronts is greater than for a source
at rest. The wave fronts reach the observer at the same velocity, whether
the source is at rest or in motion. Therefore, the waves must have a
higher (lower) frequency for a source which approaches (recedes from) an
observer than for a source at rest.

3c. Simplest Case: Head-On Approach. In the simplest case, the
source approaches an observer head-on with constant velocity. For this
case, the observer detects a constant higher frequency, up to the instant
the source passes him; after this instant, he detects a constant lower
frequency. The frequency he detects as a function of the position of the
source therefore looks like the “step function” curve (a) in Fig. 3. This
curve is consistent with the wave pattern in Fig. 2. To the right of the
source, the wave front spacing is about 1/2 the specified wavelength; to
the left of the source, the spacing is about 3/2 times the wavelength. Since
the observed frequency is inversely proportional to the wave front spacing,
the two levels of the step function in Fig. 3 correspond to frequencies which
are respectively 2 and 2/3 times the frequency of the source at rest. These

8
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Figure 3. Fre-
quency ratio f/f0

versus position
x for a source
of waves moving
at half the wave
speed. Curve (a)
is for head-on mo-
tion, curve (b) is
for a non-head-on
approach.

results based on a careful observation of Fig. 2 agree with the formula for
the Doppler effect for a moving source:

f = f0 (1 ± vs/v)
−1

, (4)

where f is the frequency of the waves according to the observer, f0 is the
A more difficult case to analyze arises when the source, still moving at
frequency the observer would detect if the source were at rest, and vs/v is
the ratio of the speed of the source to the speed of the waves. The minus
sign is for an approaching source, and the plus sign for a receding one. In
the present numerical example, we have assumed vs/v = 1/2.

3d. Oblique Approach. A more difficult case to analyze arises when
the source, still moving at constant velocity, does not approach the ob-
server head-on. In this case, the frequency undergoes a more gradual
change as the source passes the observer (see curve (b) in Fig. 3). The
detailed shape of this curve can be determined from the wave pattern
in Fig. 2. If we draw a horizontal line some distance above or below the
horizontal through the center of the source we can measure the wave
front spacing at a series of points along this line, and from this the ob-
served frequency at each point. Here we assume that the observer travels
along the horizontal line through the wave pattern. This is equivalent to
our original assumption of a stationary observer and a moving source, in
which case the wave pattern depicted would move horizontally past the
observer.
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Figure 4. Computer gen-
erated intensity pattern for a
shock wave produced when the
source speed exceeds the wave
speed.

3e. Shock Waves. A “shock wave” is produced when the source of
waves travels at a speed vs, which exceeds the speed of the waves v. As
shown in the computer-generated snapshot in Fig. 4, the wave amplitude
is zero outside a certain angular region (a cone in the three-dimensional
case). This effect could manifest itself as the wake of a boat in the case
of water waves, a sonic boom in the case of sound waves, or “Cerenkov
radiation” in the case of light waves. The shock wave arises due to the
superposition of waves emitted from the moving source at different times.
Figure 5 shows a series of wave fronts emitted at five instants of time when
the source is located at points A, B, C, D, and E. Constructive addition
of the five wave fronts (as well as all others) occurs along a direction θ
shown as the angle AFO. The line OF forms one edge of the shock wave.
We see that the ratio AO/AF = v/vs, from which we obtain

sin θ = v/vs, (5)

with v = wave speed, and vs = source speed.

4. Superposition of Waves

4a. Coherent Addition of Waves. Sources are coherent if their
relative phase does not vary in time. Two coherent point sources of waves
will produce an “interference” pattern, such as the one shown in Fig. 6,
as a consequence of the superposition principle according to which the

10
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O

A B C D E F

Figure 5. Wave fronts emitted from a moving source com-
bining to produce a shock wave.

resultant wave amplitude at any point in the xy-plane is equal to the sum
of the individual wave amplitudes, A1 + A2, at that point. An interference
pattern arises, since the relative phase between A1 and A2 varies from
point to point, due to the changing distances to each of the sources.
Given two coherent point sources, separated by a distance d, which emit
waves that are initially in phase, we may write for the amplitudes at a

Figure 6. Interference pattern
for two point sources.
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point (x, y), at time t = 0:

A1(x, y) =
S1

r1
sin

[

2π

λ1

r1

]

A2(x, y) =
S2

r2
sin

[

2π

λ2

r2

]

(6)

where S1 and S2 are the source strengths, λ1 and λ2 are the wave-
lengths, and r1 and r2 are the distances from each source to the point
(x, y). The intensity of a wave is proportional to the square of its ampli-
tude. Therefore, at any point (x, y) we can find the resultant intensity
from I(x, y) = (A1 + A2)

2. The intensity pattern shown in Fig. 6 was
produced by explicitly finding I(x, y) at a large number of points in a
rectangular grid. For the interference pattern in Fig. 6, the sources are
assumed to have equal strengths and equal wavelengths. In the usual
treatment of this problem, the condition for destructive interference is
that the waves from one source travel a distance which is an odd integral
number of half-wavelengths more than the waves from the other source,
i.e., r1 − r2 = nλ/2, n = 1, 3, 5, .... However, this unrealistically ignores
the inverse-square dependence of intensity on distance for each source.
The computer-generated interference patterns can be made, as indicated
in the preceding section, without using any such simplifying assumption.
It would be expected, however, that at distances from each source that
are large compared to the separation between sources d, there would be
little difference between the r-dependent and r-independent treatment.
In particular, we would expect that at distances from the sources that
are large compared to their separation, the directions θ for which maxima
and minima in the intensity are found, are given by the conditions:

maxima: nλ = d sin θ, minima:

(

n+
1

2
λ

)

= d sin θ (7)

where n is any integer. (The angle θ is defined with respect to the x-
axis). Figure 6, for example, was generated using d = 4 and λ = 1.5.
Equation (7) would therefore predict that maxima would be found along
θ = 0◦, 22◦, and 50◦, which seems to be born out by inspection of the
figure.

4b. Two Unequal Strength Sources. The usual analysis of interfer-
ence restricts itself to sources of equal wavelengths and source strengths.
There is no need to impose that simplifying restriction when we calculate
intensity patterns directly in terms of two independent amplitudes. In-
teresting features appear when we examine patterns for unequal sources.

12
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Figure 7. Interference pat-
tern for two unequal strength
point sources.

For example in the case of two sources of unequal strength (see Fig. 7) we
find the interesting result that the interference maxima and minima are
more pronounced on the side of the weaker source. The reason is that due
to the inverse-square dependence of wave amplitude, A1 and A2 are more
nearly equal in magnitude on the side of the weaker source. This permits
complete destructive interference when the waves are out of phase at a
given point, thereby yielding I = (A1 + A2)

2 = 0. The directions along
which minima and maxima in the intensity occur at large distances are
the same as for the case of equal source strengths. Thus, the points of
maximum and minimum intensity lie on straight lines, except near the
sources.

4c. Two Unequal Wavelength Sources. The intensity pattern from
two coherent sources with different wavelengths λ1 and λ2 is shown in
Fig. 8. Notice that the locus of points for minimum and maximum in-
tensity are no longer straight lines. This feature of the pattern can be
connected with the phenomenon known as “beats” which arises in the case
of two sources having unequal frequencies or wavelengths. The combina-
tion of two frequencies f1 and f2 is found to give rise to a “beat frequency”
f = |f1− f2|. Remember that the wave patterns we have been examining
are merely snapshots at some specific instant of time. To observe beats
we need to consider how the waves from two sources add at a given point
as a function of time. First consider the waves from two equal sources
(Fig. 6). If we were to generate snapshots at successive instants of time
we would find that the waves in that pattern seem to emanate outward
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Figure 8. Interference pat-
tern for two unequal wave-
length sources

from the origin. At a given point on the x-axis, for example, successive
crests and troughs pass that point as time progresses, but the maxima
are always the same size wave after wave. Now consider how the situ-
ation might be different for two sources having unequal wavelengths or
frequencies (Fig. 8). In this case the waves also seem to emanate from the
origin. However, due to the curvature of the pattern we see that as we
move along a specific line from the origin (say the x-axis) we go through
successive regions of minimum and maximum intensity. This means that
if we observe the intensity of the waves at a fixed point as a function of
time we would find successive minima and maxima reaching this point as
time progresses. That effect is precisely what is meant by beats.

4d. Two-Dimensional Fourier Analysis and Synthesis. Until
now we have been primarily concerned with waves from point sources.
It is also of interest to consider the interference of plane waves. For
example, we can write for the amplitudes of two plane waves travelling
along directions θ1 and θ2:

A1(x, y) = S sin

[

2π

λ
(x cos θ1 + y sin θ1 − vt)

]

A2(x, y) = S sin

[

2π

λ
(x cos θ2 + y sin θ2 − vt)

]

(8)

For simplicity it has been assumed here that the two sources have equal
strength S and wavelength λ. A time-frozen snapshot at t = 0 can be

14
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obtained from the superposition principle A = A1 + A2 , remembering
that I = (A1 + A2)

2. It is also possible to superimpose a large number
of plane waves having different wavelengths and source strengths. This is
the basis of the two-dimensional “Fourier synthesis” of arbitrary intensity
patterns. For example, any picture can be represented as a mathemati-
cal function I(x, y) specifying the intensity at a large collection of points
inside some region. The function I(x, y) can then be synthesized us-
ing the appropriate combination of many plane waves, each weighted by
the appropriate “Fourier coefficient.” These Fourier coefficients need to
be calculated for the specific two-dimensional function I(x, y) that it is
desired to synthesize. If a large enough number of waves are used (N),
the Fourier synthesized function IN (x, y) and the original function I(x, y)
giving the point-by-point intensity of the picture will be indistinguishable.
A primary reason for doing Fourier analysis and synthesis of pictures is
“image enhancement,” the improvement of picture quality by computer
(an important goal in the space program and elsewhere). Once we have
calculated the Fourier coefficients, for example, we can either enhance or
suppress particular frequency ranges. This has the effect of either en-
hancing desired features in an image or suppressing unwanted ones, and
it is quite analogous to adding treble or bass to give an altered frequency
response in a hi-fi system.

5. Program to Produce Wave Patterns

5a. Input. The computer program that produced the wave patterns
in this module requires five input parameters:

DEL = ∆(separation between sources)
RATIO = S2/S1(ratio of source strengths)
L1 = λ1(wavelength for source 1)
L2 = λ2(wavelength for source 2)
V = vs/v(ratio of the source and wave speeds).

To generate the single source patterns (Figs. 1, 2, and 4), RATIO must be
set to zero, and to generate the interference patterns for two stationary
sources (Figs. 6, 7, and 8), V must be set to zero. If there are two sources
they are assumed to be located on the y-axis, symmetric about the origin.
The scale used for all plots is that x and y are both assumed to be inside
a square grid extending from −10 to +10. The input parameters used to
generate the figures in this module are as follows:
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(x ,0)0 (D,0)
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2
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x

r2
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n

Figure 9. Locations of
two point sources assumed
in program.

DEL RATIO L1 L2 V

Fig. 1 0. 0. 4.0 0. 0.
Fig. 2 0. 0. 4.0 0. 0.5
Fig. 4 0. 0. 4.0 0. 2.0
Fig. 6 4.0 1.0 1.5 1.5 0.
Fig. 7 4.0 2.0 1.5 1.5 0.
Fig. 8 4.0 1.0 1.5 2.0 0.

When running the BASIC version of the program you will also be asked
to input values for two scaling variables, XSCLE and YSCLE, in a manner
identical to that used in MISN-0-348.

5b. Calculating the Resultant Intensity. After the input parame-
ters have been read, the program proceeds to calculate the resultant in-
tensity (RINT) at all points within a rectangular grid of points inside the
square region defined by −10 ≤ x ≤ +10,−10 ≤ y ≤ +10, in a manner
similar to the method used in MISN-0-348 to calculate the electric poten-
tial on a grid. The points in the grid are identified by a pair of indices
(j, k), where j = 1, 2, ... indicates the row number, and k = 1, 2, ... indi-
cates the column number. At each grid point starting with (j, k) = (1, 1),
the program first computes the coordinates (x, y) in terms of the indices
(j, k), using

x =
1

5
(k − 51)

16
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y =
1

3
(j − 31). (9)

If the two sources are at rest (V= 0), they are assumed to be symmetrically
located, a distance ∆ apart at the points (0,−∆/2), (0,+∆/2) (see Fig. 9).
In this case, we can use the distance formula to obtain r1 and r2, the
distances from each source to the point (x, y):

r1 =

√

x2 +

(

y −
∆

2

)2

(10)

r2 =

√

x2 +

(

y +
∆

2

)2

(11)

If source 1 is in motion the procedure for finding r1 is more complicated.
We assume that the source moves along the x-axis at constant speed and
that at time t = 0 (the instant at which a wave front reaches the point
(x, y)), the source is located at a particular point (D, 0). We need to
know the location of the source at the time when the wave front reaching
(x, y) at t = 0 was emitted from the source (see Fig. 9). The technique for
finding the location of the source (x0, 0) at the emission time is described
in the Appendix. Once the value of x0 has been determined, r1 can then
be obtained using the distance formula

r1 = ((x− x0)
2 + y2) 1/2. (12)

There is, however, one important exception. It may happen that no solu-
tion for x0 exists. This occurs when vs exceeds v, and the point (x, y) is
outside the shock wave cone. In this event, the amplitude of the wave at
the point (x, y) is zero. In order to treat this case in the program, using
the same formula for the amplitude (Eq. 6), the program sets r1 = λ1,
which achieves the desired result, because then sin(2πr1/λ1) = 0. Once
the program obtains r1 and r2 using either Eqs. (10) and (11) (if both
sources are at rest), or Eq. (12) (if source 1 is in motion), it adds 0.000001
to r1, r2, and λ2 so that when it computes the wave amplitudes A1 and
A2 according to Eq. (6), it will never divide by zero. It finally computes
the resultant intensity RINT = A2 = (A1+A2)

2. For reasons which will be
clear later, the program sets RINT = 0 if the point (x, y) is very close to
either source and V is not zero. (This produces small blanked-out circular
regions around each source, which serves to locate them.)

5c. Graphically Plotting the Intensities. After finding the resul-
tant intensity at one point, the program proceeds to the next point within
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that row. Once all the points within a row have been considered, the ar-
ray RINT(K), K = 1,2,..., contains the resultant intensities. The next step
is to digitize the intensity in each cell of the row and put these printable
values into the array IMAGE.

In the BASIC and second C++ versions of the program, the pro-
gram goes through the elements of each row, comparing each element of
the array RINT to the array of seven threshold intensities, THRES(L), to
determine the maximum intensity the element is at or above. It then
adds a digit (0-6) to the array IMAGE, with higher digits indicating higher
threshold intensities. Upon completion of one pass on the row, with each
element of the array IMAGE now having its threshold digit, the row is com-
plete. The entire set of rows is sent to a disk file that can be sent directly
to a printer or can be loaded into a word processing program and sent to
a printer from there.

In the FORTRAN and first C++ versions, the program makes thir-
teen consecutive passes through each row of elements. On each of the
seven odd numbered passes on a row, there is a progressively higher value
for the threshold, THRES(L). If the RINT value for an element is at or
above the threshold of the pass, a graphic character assigned to that pass
is added to the array IMAGE. If the intensity is below the threshold for
the pass, a blank character is added. On the even numbered passes, a
backspace character is added for each element of the row. Thus the ar-
ray of characters representing the row winds up having thirteen times as
many elements as will be in the actual printed row. When printed, the six
strings of backspaces between the the seven strings of characters causes
the strings of characters to be printed directly on top of each other (over-
printed). Thus the highest intensity points will be represented by seven
different non-blank characters printed on top of one another and lower
intensity points will be represented by fewer non-blank overprint charac-
ters (possibly none). At each position in the pattern, then, the number
of overprinted characters, and therefore the darkness of the pattern, rep-
resents the intensity at that point. The entire set of rows is sent to a disk
file that needs to be sent directly to a printer. If the file is loaded into
a word processing program and sent to a printer from there, the word
processing program will probably send the backspaces as forward spaces
and that can produce a huge number of worthless printed pages.
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6. A PROJECT TO PRODUCE WAVE PATTERNS

6a. One Moving Wave Source.

[1. ] Enter and run the program to generate wave patterns corresponding
to one source moving at various speeds. For example, the following
five sets of data will generate patterns for a source with wavelength
λ = 4.0 and a speed of 0.25, 0.50, 0.75, 1.00 and 2.00 times the wave
speed:

DEL RATIO L1 L2 V

0. 0. 4.0 0. 0.25
0. 0. 4.0 0. 0.50
0. 0. 4.0 0. 0.75
0. 0. 4.0 0. 1.00
0. 0. 4.0 0. 2.00

[2. ] For the first four cases verify the Doppler effect formula f = fo/(1 ±
vs/v) by measuring the average distance between waves in front of the
source and behind the source.

[3. ] The average distance between waves is inversely proportional to the
frequency f and according to the Doppler effect formula the ratio, R,
of the distance between waves in front and back of the source should
be given by:

R =
1− vs/v

1 + vs/v

See how well your measurements agree with this result for the first four
cases.

[4. ] The fifth set of data will produce a shock wave since the source speed
exceeds the wave speed vs/v > 1. See how well your results satisfy
the condition for the half angle of the shock wave cone: sin θ = v/vs.
Note that on some printers the x and y dimensions may not be printed
out according to the same scale. This will effect the measurement of
angles: see Appendix A.

6b. Interference Between Two Point Sources.

[5. ] Enter and run the program to generate wave patterns corresponding
to two point sources of equal source strengths and wavelengths. Use
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λ1=2, and try the following four ∆ values: ∆ = 1.0, 2.0, 4.0, 8.0. At
distances from the sources that are large compared to their separation
∆ the location of maxima and minima should be along straight lines
given by Eq. (7). Make measurements on your output in each case, and
see how well Eq. (7) is satisfied. Remember that angles measured on
the output may be distorted if your printer does not give square plots.
In that case, the actual angle θ can be found from the measured angle
θ’ using Eq. (14).

[6. ] The largest ∆ value (∆ = 8) should give a plot in which the character
of the minima and maxima closer to the sources can be more easily
examined. For this case you should find that the locus of maxima or
minima consist of hyperbolae in the vicinity of the sources. Draw these
hyperbolae directly on the output, showing the expected places where
maxima and minima should be found.

6c. Intrinsic Phase Shifts.

[7. ] One simple modification you can make to the program is to introduce
an intrinsic phase difference φ to one of two interfering sources. This
would have the effect of altering the two amplitudes given in Eq. (6)
to yield:

A1(x, y) =
S

r1
sin

(

2π

λ1

r1

)

,

A2(x, y) =
S

r2
sin

(

2π

λ2

r2 + φ

)

.

Make this modification to the program, and try running one of the
cases in Sect. 6b using φ = π radians (or 180◦) and φ = π/2 radians (or
90◦). Describe the effect that the introduction of this intrinsic phase
shift has on the resulting wave patterns.

6d. Interference of Incoherent Sources.

[8 ] Another simple modification you can make to the program is to make
the two sources add incoherently rather than coherently. Whether the
sources are coherent or incoherent the resultant intensity is given by:

I = (A1 +A2)
2 = A2

1 +A2

2 + 2A1A2 . (13)

What happens with an incoherent source is that the relative intrinsic
phase difference φ between the sources constantly changes in a random
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manner. The sign of the term A1A2 in Eq. (13) is therefore subject to
continual and rapid fluctuations. On a long-term basis it therefore
averages to zero, and for the resultant intensity for two incoherent
sources we have:

I = A2

1 +A2

2.

Modify the program to treat the case of two incoherent sources and
run it using one of the data sets you used in Sect. 6b. You should find
that the interference maxima and minima no longer exist.
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A. Correcting Angles on Plots

Suppose that for the first four graphs the ratio of the width (x) to
the height (y) of the plotted pictures is not exactly 1.0, but is instead a
factor r, (called the “aspect ratio”). In that case a line which makes an
angle θ with the x-axis will be printed out making a different angle θ’.
The relationship between the actual and measured angles is:

θ = arctan(r tan θ′) . (14)

Be sure to make this angle correction if you find that your printer does
not produce square plots.

B. Source Position with No Wave Front

We wish to determine the position (x0, 0) of a moving source at the
time when the wave front reaching an observer at (x, y) and t = 0 was
being emitted from the source (t = −T ). As can be seen in Fig. 9, the
distance traveled by the wave to reach the point (x, y) from the point
(x0, 0) is

r = v T = ((x− x0)
2 + y)1/2,

where v is the wave speed. If the source is located at a known point (D, 0)
at t = 0, then we may write

D − x0 = vs T,
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where vs is the source speed. Eliminating T between the above pair of
equations, we obtain

v

vs
(D − x0) = ((x− x0)

2 + y2)1/2)

With the aid of a little algebra, the above equation can be written as a
quadratic equation in x0:

Ax2

0 +B x0 + C = 0

where:
A = 1− (

v

vs
)2

B =
2Dv2

v2
s

− 2x

C = x2 + y2 − (
Dv

v
)2

Note that no solution x0 exists if B
2 − 4AC < 0; this occurs when

vs/v > 1 and the point (x, y) lies outside the Mach cone. Otherwise, we
can solve for x0 using the quadratic formula:

x0 =
−B + (B2 − 4AC)1/2

2A

We reject the other root, since it corresponds to a point which lies to the
right of (D, 0) (see Fig. 9).

C. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:
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m353p1f.for, Fortran; (uses overprinting to indicate intensity)
m353p1b.bas, Basic; (uses numbers to indicate intensity)

m353p1c.cpp, C++; (uses overprinting to indicate intensity)
m353p2c.cpp, C++; (uses numbers to indicate intensity)

lib351.h, needed Library for C++ program;

23

MISN-0-353 ME-1

MODEL EXAM

1. See Output Skills K1

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

2. Submit your hand-annotated output showing wave intensity plots for
a point source moving at various speeds showing:

a. your measurements (on your output) of the average distance be-
tween waves in front of and behind the source and the extent to
which they agree with the Doppler formula, for four non-shock-wave
cases.

b. your measurements (on your output) and the extent to which they
agree with the theoretical value for the half-ange of the shock wave
cone for a case where the source speed exceeds the wave speed.

3. Submit your hand-annotated output showing wave intensity plots for
two interfering point sources for at least four values of the inter-source
separation, showing:

a. your measurements (on your output) of the positions of the maxima
and minima for these cases and the extent to which they agree with
the theoretical values.

b. the extent to which the locii of the maxima and minima near the
sources (for large inter-source separation) are hyperbolae.
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4. Submit your hand-annotated output showing wave intensity plots for
two interfering point sources showing the effect of a shift in the phase
of one of the sources, showing:

a. a comparison of the un-phase-shifted case and the cases of 90◦ and
180◦ phase shifts.

b. the qualitative reason for the differences one sees.

5. Submit your hand-annotated output output showing wave intensity
plots for two interfering incoherent point sources, showing:

a. a comparison of a coherent case and the same case but with the
intrinsic relative phase between the two sources constantly changing
in a random manner.

b. the qualitative reason for the differences one sees.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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