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FOURIER SYNTHESIS;

SUPERPOSITION OF WAVES

by

Robert Ehrlich

1. Introduction

1a. Fourier Synthesized Functions. The present module explores
the implication of Fourier’s theorem which says that any function F (x)
defined in the interval 0 < x < 2π can be expressed as:

F (x) =

∞
∑

k=0

ak cos (kx) +

∞
∑

k=1

bk sin (kx) , (1)

as long as F (x) is sufficiently well behaved. In effect, F (x) can be ex-
pressed as an infinite sum of sine and cosine functions with multiplying
coefficients ak(k = 0, 1, 2, . . .) and bk(k = 1, 2, 3, . . .). The coefficients ak
and bk depend on F (x). They are given by:

ak =
1

π

∫ +π

−π

F (x) cos (kx) dx, k = 1, 2, 3, . . .

bk =
1

π

∫ +π

−π

F (x) sin (kx) dx, k = 1, 2, 3, . . .

a0 =
1

π

∫ +π

−π

F (x) dx .

(2)

Since the sum of sine and cosine terms in Eq. (1) is periodic with period
2π, the function F (x) will only be given by Eq. (1) inside the interval
0 ≤ x ≤ 2π unless it too is periodic outside this interval. In general,
there are infinite number of non-zero coefficients ak and bk. Practical
calculations cannot sum an infinite number of terms in general so the
sum in Eq. (1) is cut off at some integer N . This leads to a “Fourier
synthesized function” FN (x) where:

FN (x) =

N
∑

k=0

ak cos (kx) +

N
∑

k=1

bk sin (kx) . (3)

Obviously,
F (x) = lim

N→∞
FN (x).
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The purpose of this module is to determine how well F (x) is approxi-
mated by the Fourier synthesized function FN (x). The accuracy of the
approximation will depend on F (x) as well as N .

1b. Accuracy of the Synthesis vs. Number of Terms. The
simplest way to judge the goodness of the approximation to a particular
wave form, obtained using the Fourier expansion, Eq. (3), is to plot the
function F (x) and the Fourier synthesized function FN (x) on the same
graph. An inspection of the two curves may be all that is necessary to
determine if enough terms have been used to achieve the desired degree
of closeness. To obtain a quantitative measure of the difference between
the two functions F (x) and FN (x), we calculate the average deviation,
defined as

∆sN =
1

M

M
∑

j=1

|F (xj)− FN (xj)| (4)

where M is some number of points at which the functions F (x) and
FN (x) are sampled. By calculating ∆sN for a range of N values for a
given function F (x), we can see how the goodness of the approximation
depends on N .

1c. Physical Interpretation of Fourier Synthesis. A geometric
or physical interpretation of the Fourier theorem and the Fourier synthe-
sized function FN (x) can be obtained by appealing to the “superposition
principle.” The superposition principles states that whenever two or more
waves arrive at some point in space at the same time, the amplitude of
the resultant wave is obtained by simply summing the amplitudes for each
of the individual waves. Thus, we can look at the Eq. (1) for F (x) and
Eq. (3) for the Fourier synthesized function FN (x) as simply adding up a
series of sine and cosine waves of different wavelengths and with appro-
priately chosen amplitudes ak and bk in order to get the resultant wave
F (x) or FN (x). The terms “Fourier analysis” and “Fourier synthesis” are
closely related. Fourier analysis involves the determination of the com-
ponent wave amplitudes corresponding to a particular wave form F(x)
using Eqs. (2). Fourier synthesis involves the combination of some num-
ber N of the component waves in order to approximate the wave form
F (x).

2. Fourier Synthesis of Simple Wave Functions

2a. Three Sample Wave Forms. The three wave forms displayed in
Fig. 1, which we shall refer to as a triangle wave, a square wave, and a

6
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spike wave, can be defined in the interval −π ≤ x ≤ +π, as follows:

triangular wave: F (x) = 1−
2

π
|x| (5)

square wave: F (x) = +1 for 0 ≤ x < π

= −1 for − π ≤ x < 0
(6)

spike wave: F (x) = lim
ε→0

Fε(x)

where:

Fε(x) ≡
1

ε
for |x| <

ε

2

≡ 0 for |x| >
ε

2
.

(7)

Each of the three wave functions can be defined for all values of x by
noting that they are periodic with period 2π radians.

2b. Their Fourier Coefficients. As shown in the Appendices the
coefficients ak and bk may be found using Eqs. (2) for each of the three
wave forms:

ak bk

triangular wave

(

2

πk

)2

[1− (−1)k] 0

square wave 0

(

2

πk

)

[1− (−1)k]

spike wave
1

π
0

The above formulas hold for all positive integral values of k. The leading
coefficient a0 is taken to be zero in all three cases. This is equivalent
to assuming that the wave form has zero net area between −π and +π.
Clearly this is true for the square and triangle waves. It is only true for
the spike wave if the wave form is moved down by an amount 1/(2π).
The ak coefficients are zero for the square wave and the bk coefficients
are zero for the triangle and spike waves, for all values of k, from sym-
metry considerations. A symmetric function (i.e., a function such that
F (−x) = F (x)), such as a triangle or spike wave, is expressible in terms
of a sum involving only symmetric functions, such as cosines. Similarly,
an antisymmetric function (i.e., a function such that F (−x) = −F (x)),
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square wave
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Figure 1. Three sample wave forms.

such as the square wave, is expressible in terms of a sum involving only
antisymmetric functions, such as sines.

In the general case of a function F (x) which is neither symmetric nor
antisymmetric, both the sine and cosine sums are needed. That would
be the case if any of the three wave forms are shifted to the right or left
by a non-integral multiple of π. In comparing the three wave forms it
is interesting to notice that the ak or bk coefficients have a dependence
on k that can be expressed as: k−2 (square wave), k−1 (triangle wave),
and k0 (spike wave). This has an important consequence for how good an
approximation the Fourier synthesized function FN (x) is to the original
F (x) in each case.

2c. Rate of Convergence. The dependence of the goodness of the
approximation on the number of waves can be judged indirectly by seeing

8
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how ak and bk depend on k, since the faster ak and bk decrease with k, the
faster ∆sN decreases with N . For the three functions depicted in Fig. 1,
we would expect the approximation to improve fastest for the triangle
wave, for which ak ∝ k−2, next for the square wave, for which bk ∝ k−1,
and slowest for the spike wave, for which ak ∝ k0. This result should not
be surprising, in view of the fact that the three functions are increasingly
“badly behaved” in this order. The triangle wave is everywhere continu-
ous, but it has a discontinuous first derivative at the points x = 0, ±π,
±2π, . . . . The square wave has a discontinuity in the function itself, as
well as the first derivative, at these points. Finally, the spike wave has
two discontinuities, at x = ±ε.

2d. Examination of the Spike Wave Form. For any wave form, the
more waves we add in the Fourier synthesized wave form FN (x), the more
closely we approximate the wave form F (x). In the case of the spike wave,
this means that the width of the peak in the function FN (x) must become
narrower as N increases, approaching zero as N approaches infinity. It is
instructive to see how this comes about. Let us define the full width ∆x
of the central peak in the function FN (x), as the distance between the
first zeros at x = ±x0, on either side of the peak, i.e., ∆x = 2x0, where
FN (±x0) = 0 (see Fig. 2). For the spike wave, we have Fourier coefficients
a1 = a2 = a3 = . . . = aN = 1/π and b1 = b2 = b3 = . . . = bN = 0, so that

FN (x) =

N
∑

k=1

ak cos (kx)

=
1

π
(cos (x) + cos (2x) + cos (3x) + . . . + cos (Nx)) .

(8)

There is a useful trick involving vectors for evaluating the sum in Eq. (8).
Consider N vectors each of length 1/π arranged as shown in Fig. 3. Each
vector makes an angle x with the preceding one. The sum in Eq. (8) is
equal to the sum of the horizontal components of the N vectors. We can
find the smallest angle between the vectors which yields a zero resultant
horizontal component by requiring the resultant vector to be vertical (see
Fig. 3). In this case, the angle x between one vector and the next is given
by

x = x0 =
π

N + 1
. (9)
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x = -p

x

F (x)N

x = -x0

Dx

x = +x0 x = p

Figure 2. FN (x) for a spike wave, N = 5.

Thus, x = x0 is the first zero in the function FN (x). The formula we have
sought for the full-width of the peak is therefore

∆x = 2x0 =
2π

N + 1
. (10)

Equation (10) is clearly consistent with the narrowing of the peak as N
increases: the width approaches zero as N approaches infinity.

2e. Applications of the Spike Wave Form. The result indicated
in Eq. (10) has important implications for a wide range of physical phe-

general
case

resultant
of N vectors
has no
horizontal
component

(a) (b)

Figure 3. Sum of N vectors of length 1/π for N = 5.
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f(x)

(x)

Figure 4. A wave form in the shape of a human profile.

nomena. In acoustics, for example, Eq. (10) implies that if we wish to
Fourier synthesize a sound pulse of very short duration, we need to use
a large number of frequencies (large band width in engineering terminol-
ogy). Another interesting application of the spike wave form is to the
problem of a wave packet, which may be represented by a nonperiodic
function which has a single spike and is zero everywhere else. This may
be considered a limiting case of the spike wave form, in which the wave-
length or distance between spikes becomes infinite. Wave packets are of
great utility in quantum mechanics, where this type of “localized” wave
is used to represent a traveling particle. The width of the packet, ∆x, is a
measure of the uncertainty in the particle’s position. The particle also has
an uncertainty in its momentum ∆p, which is proportional to the number
of waves N , used in the Fourier synthesis of the wave packet. (This is
because in quantum mechanics, a particle having a unique momentum p
is represented by a sine (or cosine) wave of one specific frequency, so that
a range of momenta ∆p corresponds to a number of different frequencies.)
Thus a consequence of Eq. (10) for this case is that the more localized the
particle (smaller ∆x) the greater the range in momentum ∆p needed in
the synthesis of the wave packet. This inverse relationship between ∆x
and ∆p is the basis of the Heisenberg uncertainty principle.

3. Synthesis of Arbitrary Wave Forms

Fourier’s theorem states that any periodic function is expressible in terms
of a sum of sine and cosine functions. However, a formal expression

11
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for the coefficients ak and bk can only be found for certain functions
(such as the square, triangle, and spike wave forms). In many cases the
function F (x) is such that a formal evaluation of the integrals in Eqs. (2)
is impossible. In other cases, even the function F (x) itself may not be
expressible in formally. Should F (x) represent some natural phenomenon,
then the function can only be given in a graph or its equivalent, a table
of numbers, giving the value of the function at a series of x-values (where
x usually represents either time or position). For example, to Fourier
analyze human speech we must specify the sound intensity F (x) at a
series of x time values. In such cases, each of the coefficients, ak, bk, k =
1, 2, 3, . . . N , must be calculated using a numerical integration technique,
such as Simpson’s rule.1 As an example of wave form that needs to be
treated numerically consider the function shown in Fig. 4. This function
(a human profile turned sideways) has no known formal mathematical
form, but it can be specified by a table of numbers (for various plotted
x-values) obtained from the graph.

4. Synthesis by Computer

4a. Input. A computer program has been written to compute and plot
Fourier synthesized wave forms specified by the two input parameters:
N = number of waves to use in the Fourier synthesis
TYPE = 0, 1, 2, 3 to select which of the four wave forms is desired

(square, triangle, spike, or human profile, respectively)

Any positive number may be used for N; however, for the case TYPE = 3,
if N exceeds 48, only the first 48 waves will actually be included, since at
present only the first 48 coefficients have been specified in the program.
Note that if the value of N is 100 (for TYPE 6= 3), then in addition to giving
the usual output (the Fourier synthesized wave form), the program also
generates a plot of the average deviations for N = 2, 4, 6, . . . , N waves. This
provides a quantitative measure of how the goodness of the approximation
depends on the number of waves.

4b. Output. The output shown in Figs. 5-10 was obtained using five
sets of input parameters:

1See “Numerical Integration,” (MISN-0-349).
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N TYPE

Fig. 5 5 0
Fig. 6 5 1
Fig. 7 5 2
Fig. 8 100 2
Fig. 10 48 3

Recall that the values of TYPE on the first three lines specify the square,
triangle, and spike wave forms, respectively. The output for the fourth
data line (Fig. 8) is also for the spike wave form; the large value of N causes
the spike to be extremely narrow (it is so narrow that its width cannot
be determined from this figure). Since the value of N is 100 for this case,
the computer produces an additional graph (Fig. 9) showing the average
deviations for Fourier synthesized wave forms having k = 2, 4, 6, . . . , 100
waves. The output shown in Fig. 10 is produced using the fifth set of
input parameters for which N = 48 and TYPE = 3.

5. Procedures

5a. Dependence on N , the Number of Waves. Discuss the results
you obtain when running the program using a series of N values between 1
and 100 for each of the four wave forms (N = 48 is the maximum value for
the human profile wave form — TYPE = 3). An interesting phenomenon
occurs for the case N = 50. Try using N = 40, 50, and 60 for the case of
the square wave (TYPE = 0), and see if you can explain the differences.
Discuss both the goodness of the approximation as a function of N for
each wave form separately and how the goodness of the approximation
depends on the nature of the wave form, for particular values of N. As
was discussed in paragraph (2c) you should find that the triangle wave
synthesis improves fastest with increasing N, and the spike wave increases
slowest with increasing N.

5b. Plots of Average Deviation. A quantitative way to study the
improvement in the Fourier synthesized wave form with increasing N is
to examine the average deviation plots for each wave form. These plots
are created when N is selected to be 100. Compare the three average
deviation plots you obtain for the triangle, square, and spike wave forms,
and relate your observations to the formulas for the Fourier coefficients
(and the discussion in paragraph (2c)). An example of the results for the
spike wave form is shown in Fig. 9 which is a plot of the average deviation
versus the number of waves. As expected the average deviation decreases
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Figure 5. Computer output for Fourier synthesized square
wave, N = 5.

with increasing N. One surprising feature of Fig. 9 is the sharp dips that
occur at certain values of N. See if you can explain the cause of these
irregularities. Hint: In computing the average deviation, the theoretical
and Fourier synthesized wave forms are sampled at a finite number of
points. The values of the wave forms are not sampled between those
evenly-spaced x-points.
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Figure 10. Computer output of Fourier synthesized human
profile, N = 48.
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-p 0 p-p 0 p

Figure 11. The saw tooth wave form.

A. Fourier Coefficients: Square Wave

For the square wave, we have

ak =
1

π

∫ +π

−π

F (x) cos (kx) dx = 0; for k = 1, 2, 3, . . .

The integral vanishes because the integrand is an antisymmetric function,
being the product of an antisymmetric function [F (x)] and a symmetric
function (cos k x). The bk coefficients for the square wave can be found
using

bk =
1

π

∫ +π

−π

F (x) sin (kx) dx .

With the definition of the square wave,

F (x) = +1 for 0 ≤ x ≤ π

= −1 for − π ≤ x ≤ 0 ,

this becomes

bk = −
1

π

∫ 0

−π

sin (kx) dx +
1

π

∫ +π

0

sin (kx) dx .

x0

-2 +2p 0 p

Figure 12. The square pulse wave form.
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These integrals can be easily evaluated, giving

square wave: bk =
2

πk

[

1− (−1)k
]

for k = 1, 2, 3, . . .

B. Fourier Coefficients: Triangle Wave

In the case of the triangle wave, we find

bk =
1

π

∫ +π

−π

F (x) sin (kx) dx = 0

since the integrand is antisymmetric. The ak coefficients for the triangle
wave can be found using

ak =
1

π

∫ +π

−π

F (x) cos (kx) dx .

With the definition of the triangle wave: [F (x) = 1 − (2/π) |x|], this
becomes

ak =
1

π

∫ 0

−π

(

1 +
2x

π

)

cos (kx) dx +
1

π

∫ +π

0

(

1−
2x

π

)

cos (kx) dx .

These two integrals can be easily evaluated, giving

triangle wave: ak =

(

2

πk

)2
[

1− (−1)k
]

; for k = 1, 2, 3, . . .

C. Fourier Coefficients: Spike Wave

Finally, in the case of the spike wave, we have

bk =
1

π

∫ +π

−π

F (x) sin (kx) dx = 0

because the integrand is antisymmetric. The coefficient ak for the spike
wave can be found using

ak =
1

π

∫ +π

−π

F (x) cos (kx) dx .
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We define the spike wave as the limit, as ε goes to zero, of:

F (x) =
1

ε
for |x| <

ε

2
; F (x) = 0 for |x| >

ε

2
.

In the limit as ε goes to zero, this is called a “delta function.” The
area under the delta function, its area, is unity. The function’s Fourier
coefficients can be found by starting with:

ak =
1

π

∫ ε/2

−ε/2

1

ε
cos (kx) dx .

As ε approaches zero, we have cos (kx) ≈ 1 for all x in the interval
−(ε/2) < x < +(ε/2), so:

spike wave: ak =
1

π
for k = 0, 1, 2, 3, . . .

Note that it is only for the spike wave that the ak coefficients are inde-
pendent of k.

One problem with the synthesized delta function (“spike”) wave is that
the height of the central peak is infinite for the exact wave but finite for the
synthesized wave. This makes the deviation for the central peak infinite
and the same for the average deviation. In addition, the height of the
central peak of the synthesized function depends strongly on the number
of cosine waves that form it. This is in contrast to the other wave forms,
where the “size” of the synthesized wave is roughly independent of the
number of contributing waves. For plotting, the synthesized spike wave
is the only one which needs a scale factor that depends on the number of
contributing waves.

We could scale the spike wave plot by requiring that it have unit area, just
as does the exact function. However, that gives the rather useless result
that the average deviation, omitting the central peak value, is roughly
independent of the number of contributing waves. A skinny central peak,
resulting from the use of many cosine waves, has the same average devi-
ation as does a fat central peak, resulting from use of only a few waves.
Visually, however, the skinny peak looks more like what we are after.

In order that the average deviation shall roughly correspond to a synthe-
sized function’s visual quality, we multiply the synthesized function at all
x-values by a single constant that makes the function have unit height at
its peak. Then the plot with the desirable skinny peak has a smaller aver-
age deviation than does the plot with a fat peak. (The constant multiplier
equals the number of participating cosines. Why?)
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D. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:

m352p1f.for, Fortran;
m352p1b.bas, Basic;
m352p1c.cpp, C++;

lib351.h, needed Library for C++ program;
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MODEL EXAM

1-3. See Output Skills K1-K3

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

4. Submit your hand-annotated output for the Fourier synthesis of each
of the four wave forms, showing:

a. a series of N values between 1 and 100 for each of the four wave
forms, such that one can see the highlights of the progression with
N;

b. the interesting phenomenon for the case N = 50;

c. how the goodness of the approximation depends on N for fixed wave
form, for each wave form in turn;

d. how the goodness of the approximation depends on the wave form
for fixed N, for several N values.

5. Submit your hand-annotated output for the average magnitude of the
deviation of the synthesized waves from the input waves, showing:

a. how the details of the plots for the three wave forms relate to the
discussion in 4c and 4d above.

b. why there are sharp dips in the plots and an especially sharp dip
at N = 50. Note: you must not just repeat the “hint” given in the
text; you must give a complete argument.
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6. Submit your hand-annotated output for the saw tooth case, showing
that you achieved a good synthesis of the target form.

7. Submit your hand-annotated output for the square pulse case, showing
how the number of waves required to get a reasonably good approxi-
mation depends on the pulse width.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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