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EULER’S METHOD FOR

COUPLED DIFFERENTIAL EQUATIONS;

RLC CIRCUITS

by

Robert Ehrlich

1. Euler’s Method

1a. Original Euler’s Method. The simplest algorithm for the nu-
merical solution of first-order differential equations of the form

dq

dt
(t) = f [q(t), t] , (1)

where f is some known function, is based on the Euler method. This
method replaces the differential equation by a finite difference equation
through the substitution of1

dq

dt
(t) ' ∆q

∆t
=
q(t+∆t)− q(t)

∆t
(2)

into Eq. (1). This approximation is the basis of the original Euler method,
wherein we solve Eq. (2) for q(t+∆t):

q(t+∆t) = q(t) +
dq

dt
(t)∆t (3)

and obtain dq/dt from Eq. (1).

1b. Improved Euler’s Method . The basis of the improved Euler’s
method is the observation that the right hand side of Eq. (2) is a better
approximation to the derivative dq/dt at the intermediate time t+∆t/2
than at the time t. This gives:

dq

dt
(t+

1

2
∆t) =

q(t+∆t)− q(t)

∆t
. (4)

The reason for this improvement is illustrated in Fig. 1. Equation (4) can
be rearranged to give:

q(t+∆t) ' q(t) + ∆t
dq

dt
(t+

1

2
∆t (5)

1See “Numerical Solutions of Differential Equations for RC Circuits Using Euler’s
Method” (MISN-0-350).
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Figure 1. Graphical basis of the improved Euler method.
The slope of curve (a) is the right side of both Eqs. (2) and
(4), that of curve (b) is the left side of (2), and that of curve
(c) is the left side of (4).It is obvious that (c)’s slope is a
better approximation to (a)’s slope than is (b)’s.

where the derivative at the intermediate time, t+∆t/2, can be approxi-
mated by the average of the derivatives at times t and t+∆.

dq

dt
(t+

1

2
∆t) ' 1

2

[

dq

dt
(t+∆t) +

dq

dt
(t)

]

. (6)

Equations (5) and (6) yield the improved Euler equation:

q(t+∆t) ' q(t) +
∆t

2

[

dq

dt
(t) +

dq

dt
(t+∆t)

]

. (7)

Equation (7) represents a substantial improvement on Euler’s original
method given in Eq. (3), but it requires knowledge of dq/dt at time t+∆t
which, through Eq. (1), requires q(t + ∆t) and that is the very quantity
we are trying to find! The “improved Euler method” specifies that the
required dq/dt at t+∆t is to be obtained by: (1) getting a crude estimate
of q(t+∆t) from Eq. (3); and (2) putting that crude estimate into Eq. (1)
to get the required derivative.
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1c. The RLC Circuit . In the circuit shown in Fig. 2, an EMF (an
applied voltage Va) is connected across the series combination of a switch
S, a resistor R, an inductor L, and a capacitor C. We are interested in
determining how the current in the circuit varies as a function of time
after the switch is closed. Kirchhoff’s second rule, otherwise known as
the loop equation, states that around any closed loop the sum of the
potential drops equals the sum of the EMF’s. Applying this rule to the
circuit shown in Fig. 2 after the switch is closed gives:

VR + VL + Vc = Va . (8)

The voltages across R, L, and C can be expressed in terms of the current
I, its time rate of change dI/dt, and the charge q on the capacitor C:

VR = IR; VL = L
dI

dt
; VC = q/C . (9)

Substitution of Eqs. (9) into (8) yields

L
dI

dt
+ IR+ q/C = Va

or:
dI

dt
=

1

L
[Va − IR− q/C] . (10)

In order to find the current I as a function of time, we must solve Eq. (10)
together with the relation

I =
dq

dt
, (11)

which is the definition of the current flowing away from one plate of the
capacitor. This is also the current which flows through the elements R
and L because this is a single loop circuit. Equations (10) and (11) can be
solved using the Euler methods. The two special cases we shall consider
are:

1 Free oscillations of the RLC circuit when Va = (applied voltage) = 0;

2 Forced oscillations of the RLC circuit with Va = V0 sin ωt;

The two first order differential equations, Eqs. (10) and (11), can be made
into a single second order differential equation by differentiating Eq. (10)
with respect to time and substituting it into Eq. (11). This gives:

L
d2I

dt2
+R

dI

dt
+

I

C
+
dVa

dt
= 0 . (12)
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S

R

L

C

Va

Figure 2. The RLC series circuit.

Methods other than Euler’s must be used to solve the problem in this
form.2

1d. Applying the Two Euler Methods to RLC Circuits. In the
original Euler method we use the first order Taylor expansions:

q(t+∆t) = q(t) + q′(t)∆t

I(t+∆t) = I(t) + I ′(t)∆t
(13)

where first derivatives have been indicated by primes. In the improved
Euler method the derivatives q′(t) and I ′(t) in Eq. (13) are replaced by
the average values:

1

2
[q′(t) + q′(t+∆t)]

and
1

2
[I ′(t) + I ′(t+∆t)] .

Note that: I(t) ≡ q′(t) ≡ dq/dt. The exact sequences of steps followed in
the two Euler methods are shown in Fig. 3. In order to begin the process
we must specify two initial conditions, since there are two first order
differential equations (or one second order equation). We shall arbitrarily
assume the initial conditions, I = 0 and q = 1 at time t = 0. We next
calculate values for the charge and current at the next value of the time,

2See “The Runge-Kutta Method for Solving Differential Equations,” (MISN-0-367)
or “The Numerov Method for Solving Differential Equations, Illustrated with the
Damped Driven Oscillator,” (MISN-0-39).
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Figure 3. Flow diagram for the two Euler methods.

t+∆t, using the original Euler’s method [Eq. (13)], as well as an updated
value for the derivative I ′(t + ∆t). For the original Euler’s method we
advance the time by ∆t(t → t+∆t), and loop back to repeat the process
(dotted line). In the improved Euler method we compute improved values
for q(t+∆t) and I(t+∆t) before completing the loop. Note that it was
necessary to compute the original values for q(t+∆t) and I(t+∆t) before
we could get the improved values since the improved values make use of
the derivatives, q′(t+∆t) ≡ I(t+∆t) and I ′(t+∆t), found from Eq. (10).

2. Several Exact Solutions

2a. Zero Applied Voltage . If the applied voltage Va is zero, then in
certain cases free oscillations can occur in the RLC series circuit. If Va

is taken to be zero for all times, then dVa/dt is also zero, in which case

9
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Eq. (12) has the exact solution:

I = I0 e
−(R/2Lt) sin ω0t , (14)

where

ω0 =
1√
LC

(

1− R2C

4L

)1/2

. (15)

The computer-generated curve of Fig. 4 is the approximate solution
obtained using the improved Euler’s method. The gradually decaying
oscillations of the curve agree with the general form of the exact solution,
in which an oscillatory factor, sin ω0t, is multiplied by a “damping factor”
exp[−(R/2L)t]. As long as R2C/4L is much less than one, then Eq. (15)
which gives a value for ω0, reduces to

ω0 ≈
1√
LC

;
[

for R << (4L/C)1/2
]

; (16)

where ω0 is 2π times the frequency of the free oscillations. The period T
of the oscillations is given by:

T =
2π

ω0
≈ 2π

√
LC . (17)

The appearance of the damping factor e(−R/2L)t, in Eq. (14), implies that
the envelope i.e., the non-oscillatory curve drawn tangent to the solution
(see the hand-drawn dotted curve in Fig. 4), should fall to a fraction
1/e ≈ 0.368 of its initial value after a time

τ =
2L

R
. (18)

By examining the expressions for ω0 in Eq. (16) we see that ω0 will be a
real number only if

1− R2C

4L
> 0 ,

which therefore requires that:

R < (4L/C)1/2 . (19)

If R exceeds the critical value
√

4L/C. then ω0 becomes imaginary and
the factor sin ω0t is replaced by the exponential of a real number. For
this “overdamped” case the solution becomes a pure decaying exponential
and no longer oscillates. For this reason, when R has the borderline value,
R =

√

4L/C, the circuit is said to be criticall damped.
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Figure 4. Computer output for the free underdamped oscil-
lator (hand-drawn solid line). Also shown is the exponential
damping factor (dashed line), computed directly from its
exact formal expression. The times t1,...,t4 are one period
apart.

2b. Sinusoidal Applied Voltage. If the applied voltage is a sinu-
soidal function of time, then forced oscillations occur in the RLC circuit.
When the applied voltage is given by Va = V0 sin ωt, then Eq. (12) again
has an exact solution. If the initial conditions are chosen properly, the cur-
rent is a sinusoidal function of time, with the same oscillation frequency
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as the applied voltage:

I = Im sin(ωt− φ) , (20)

Im =
V0

Z
(21)

and the quantity Z is known as the impedance and is given by

Z =

[

R2 +

(

ωL− 1

ωC

)2
]1/2

. (22)

The quantity φ appearing in Eq. (20) is the phase shift which is the rela-
tive shift between the sine curves describing the applied voltage and the
current as functions of time; φ is given by

φ = tan−1

(

ωL− 1

ωC

)

R
. (23)

If the initial conditions are chosen arbitrarily, the solution will not have
a purely sinusoidal time dependence. Generally these departures from a
sinusoidal shape occur at times close to t = 0 and then gradually disap-
pear. For this reason such initial departures from a sinusoidal shape are
known as transient currents. They occur whenever the initial conditions
are other than those consistent with the specific solution which is purely
sinusoidal [Eq. (20)]. Figure 5 shows a computer generated solution ob-
tained using the improved Euler’s method. The initial conditions used in
this case (q0 = 1 and I0 = 0), are such that there evidently is a transient
current present initially. After the transient current dies out, the ampli-
tude and phase of the resulting sine wave should be consistent with that
given by Eq. (21).

2c. Resonance in RLC Circuit . Like any system whose oscillations
are driven by an external source, an RLC circuit can resonate when the os-
cillation frequency of the external source matches the “natural” frequency
of the circuit. (The natural frequency is the frequency of free oscillations).
At resonance the amplitude of the current has a greater value than for
any other frequency. To find the frequency at which the amplitude of
the current Im = V0/Z reaches its maximum, we must find the frequency
for which Z is a minimum. Since the factor (ωL− 1/ωC)2 which appears
in Eq. (22) can not be negative, Z will have its smallest possible value
when this factor is zero:

(

ωL− 1

ωC

)2

= 0 . (24)

12
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Figure 5. Computer output for Va = V0 sin ωt, showing
transient current present at times near t = 0. At much later
times the function becomes purely sinusoidal.

Solving Eq. (24) for ω yields

ω =
1√
LC

. (25)

Note that the resonant frequency given by Eq. (25) is the same as the
approximate frequency of free oscillations, given by Eq. (16). This means
that the circuit shows the greatest “response” (maximum amplitude cur-
rent), when the applied voltage has a frequency equal to the natural
frequency, i.e., the frequency of free oscillations.
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2d. Error Analysis . It is easy to compare the accuracy of the im-
proved and original Euler method’s. In the improved Euler method we
find q(t + ∆t) using Eq. (7) in which the derivative dq/dt(t + ∆t) needs
to be evaluated using the original Euler method, that is:

dq

dt
(t+∆t) =

dq

dt
(t) + ∆t

d2q

dt2
(t) (26)

Combining Eqs. (7) and (26) yields:

q(t+∆t) = q(t) + ∆t
dq

dt
(t) +

∆t2

2

d2q

dt2
(t) . (27)

This is the correct Taylor expansion for q(t + ∆t) up to terms second
order in ∆t. The size of the ∆t2 term therefore, represents the difference
between the original and improved Euler methods. Clearly, the accuracy
of both methods improves as ∆t decreases. In the case of the RLC circuit
there are three time intervals of importance:

1. The period of free oscillations T = 2π/ω0, where ω0 is given by
Eq. (15).

2. The damping time for free oscillations, τ = 2L/R.

3. The period of the forced oscillations T = 2π/ω, where ω is the fre-
quency of the applied voltage: Va(t) = V0 sin ωt.

In order for either the original or the improved Euler method to give
accurate results, the time step ∆t must be chosen to be small compared
to all three of these times.

3. Computer Implementation

3a. Input. The program3 first reads numerical values for the parame-
ters R, L, C, D, N, VO, and W, where

R = resistance
L = inductance
C = capacitance
DT = ∆t (time step)
N = number of time steps
V0 = V0(amplitude of applied voltage)
W = ω (frequency of applied voltage).

3For BASIC, FORTRAN, and C++ implementations, see this module’s Computer
Program Supplement.
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After reading the data and setting the initial conditions, the program
proceeds to advance the time in the sequence: 0, ∆t, 2∆t, 3∆t, . . . , N∆t.
For each new value of the time, it calculates new values of the charge
and current from the old values, using the improved Euler’s method. In
addition to printing out a table of numerical values giving the current at
each time, the program also displays a graph of current against time.

3b. Output. The sample output shown in Figs. 4 and 5 were obtained
using two data cards with the following numerical values for the parame-
ters:

R L C DT N V0 W

Fig. 4 0.2 2.0 2.0 1.0 55.0 0.0 0.00
Fig. 5 1.0 8.0 8.0 2.0 55.0 0.7 0.25

In the first case, since the applied voltage is zero (V0 = 0), and since
the values used for R, L, and C satisfy inequality (19), the solution is a
damped oscillatory one, as previously discussed. In the second case, the
sinusoidally varying applied voltage (V0 6= 0), yields a solution which is
also sinusoidal, apart from a transient effect.

4. A Project: Examine Accuracy

4a. Accuracy For Free Oscillations. Run the program using a num-
ber of data sets all of which have V0 = 0 and various values for the other
parameters. Verify that the inequality (19) must be satisfied if the solu-
tion is to be an oscillatory one, by using values of R slightly less than and
slightly greater than the value for critical damping. For the oscillatory
solutions, see if their detailed shape agrees with the form of the exact
solution (equation). To verify that the shape of the curve in Fig. 4 is
correct, we may identify the times t1, . . . , t4 at which the current I has
its positive maxima: Reading Fig. 4, for example, we find:

t1 t2 t3 t4
current (I) 0.2757 0.1818 0.0912 0.0522
time (t) 10.0000 21.0000 34.0000 46.0000

The time from t1 to t4 represents three periods, so we empirically find
T = (t4 − t1)/3 = 12 sec. The theoretical value for the period may be
found using Eq. (15) which yields W = 0.494 and T = 2π/ω = 12.6 sec.
Carry out a similar analysis for your own data.
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4b. Accuracy For Forced Oscillations, Resonances. Run the pro-
gram using a number of data sets with various values for the parameters,
except for VO which is kept at some fixed nonzero value. In particular, try
a range of values for W with the other parameters held fixed. See if the
maximum amplitude current is observed at the predicted resonant fre-
quency, [Eq. (25)]. Use enough values for W, above and below resonance,
to be able to plot by hand a resonance curve (amplitude of the current
versus frequency). Note, that when you vary W you should also vary DT,
since DT = 0.5/W. This will have the effect of giving the same number of
points per cycle for each run.
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A. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:

m351p1f.for, Fortran;
m351p1b.bas, Basic;
m351p1c.cpp, C++;

lib351.h, needed Library for C++ program;
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MODEL EXAM

1. Write an explanation of the improved Euler method for the numerical
solution of two coupled first-order differential equations of the form
dy1/dx = f1(y1, y2, x), dy2/dx = f2(y1, y2, x).

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

2. Submit the graphical results of your free-oscillation runs using the im-
proved Euler method, with your hand-annotated output demonstrating
that:

a. an oscillatory solution requires Eq. (19) when, done by graphically
displaying the shapes found for R values slightly below and above
the critical value;

b. the period of your oscillatory solution is correct, done by deduc-
ing the value of T from at least 3 periods and comparing to your
computed theoretical value; and

c. the general shape of the solution is correct, done by plotting it.

3. Submit the graphical results of your forced-oscillation runs using the
improved Euler method, with your hand-annotated output succinctly
demonstrating that:

a. your maximum current amplitude occurs at your formula-calculated
resonant frequency (shown on a plot of frequency versus current
amplitude).
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b. you properly used the same number of points per wave period for
each run.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.

Note that the award of points is set up in such a way that a student will
get 50% or less on the exam if the student does only computer work and
no physics.
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