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EULER’S METHODS FOR

SOLVING DIFFERENTIAL EQUATIONS;

RC CIRCUITS

by

Robert Ehrlich

1. Euler’s Method

1a. The Problem. In this module, an algorithm using Euler’s method
will be developed for the numerical solution of any first order differential
equation which can be put into the form,

dq

dt
= f(q, t) , (1)

where f(q, t) is some known function of q and t. The method will be used
to numerically solve the differential equation for an RC circuit. In this
case, q(t) gives the charge on the capacitor as a function of time.

1b. The Method of Solution. To apply Euler’s method, the deriva-
tive dq/dt is written as a finite difference ∆q/∆t, where ∆q = q(t+∆t)−
q(t). In this case, Eq. (1) becomes:

∆q = f(q, t)∆t (2)

so that:
q(t+∆t) = q(t) + f(q, t)∆t . (3)

Repeated use of Eq. (3) allows us to numerically find the function q(t) at
a series of times: t = ∆t, 2∆t, 3∆t, . . . , in terms of some initial value
q(0).

+++ +++

--- ---

CR

SI

Figure 1. The RC Circuit (Capacitor
Discharging)
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1c. Application to the RC Circuit. If an initially charged capacitor
is connected across a resistor, as shown in Fig. 1, it begins to discharge as
soon as the switch S is closed (t = 0). In this problem we are interested
in studying the time dependence of the charge on the capacitor. Once
the switch is thrown, the voltage across the resistor VR must at all times
have the same magnitude as the voltage across the capacitor VC . Since
crossing a resistor in the direction of the current represents a potential
drop, we may write

VR + VC = 0.

With the substitutions VR = IR = Rdq/dt and VC = q/C we have:

R
dq

dt
+

q

C
= 0

so that:
dq

dt
= −

q

T
(4)

where T = RC is the so-called “time constant” of the RC circuit and
has units of time (e.g. seconds). This first order differential equation has
been expressed in a form permitting its solution by Euler’s method. This
particular differential equation also has a simple exact solution: q(t) =
q0 e

−t/T , as can be verified by direct substitution in Eq. (4). The existence
of this exact solution permits a direct check on the accuracy of Euler’s
method.

1d. Accuracy of Euler’s Method. The solution of Eq. (4) using
Euler’s method here uses:

∆q =
dq

dt
∆t = −

q

T
∆t

so that the value of the charge q at time t+∆t can be found in terms of
the charge at time t using:

q(t+∆t) = q(t)−
q

T
∆t (5)

Suppose, for example, we assume that T = 10, ∆t = 1, and that at time
t = 0 we have q(0) = 1. We can then use Eq. (5) to find q(1) in terms of
q(0):

q(1) = 1−
1

10
(1) = 0.900 .

A second use of Eq. (5) to obtain q(2) from q(1) yields:

q(2) = 0.900−
0.900

10
(1) = 0.810 .
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Repeating this process allows us to find q(t) at a series of times t = 0, 1,
2, 3, 4, 5, 6 yielding these values for q(t):

1.000, 0.900, 0.810, 0.729, 0.656, 0.590 .

These values may be contrasted with the exact solution from q(t) =
q0 e

−t/T , at the same seven times, for q(t):

1.00, 0.904, 0.818, 0.740, 0.670, 0.606 .

1e. Limitations of Euler’s Method. The above agreement between
the numerical solution using Euler’s method and the exact solution is
only fair. It could be improved by making the size of the time step ∆t
a smaller fraction of T . However, as we shall see in the next section,
the method itself can be changed to give better agreement without using
smaller values of ∆t. This can be of considerable practical importance,
since the smaller we make ∆t, the more time steps we need to reach a
given time, and hence the longer it takes to carry out the computation.
In addition, steps that are too small can result in round-off or truncation
error.1

2. Improved Euler’s Method

2a. A Better Approximation. The basis for the Euler method of
solving a differential equation is the replacement of the derivative dq/dt
at time t by the finite ratio ∆q/∆t,

dq

dt
(t) ≈

∆q

∆t
=

q(t+∆t)− q(t)

∆t
(6)

so that the solution using Euler’s method can only be as good as this
approximation. An improvement can be made based on the fact that the
right side of Eq. (6) is actually a better approximation to the derivative
at time t+ (1/2)∆t than at time t:

dq

dt

(

t+
∆t

2

)

≈
q(t+∆t)− q(t)

∆t

This can easily be seen from Fig. 2; the slope of line “a,” ∆q/∆t, is much
closer to that of line “c,” dq/dt (t + (1/2)∆t), than to that of line “b,”

1For examples, see Appendix B of module MISN-0-245.
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Figure 2. Graphical basis of the improved Euler’s method.
See text for details.

dq(t)/dt, independent of the detailed shape of the function q(t). The
above equation can be rearranged to yield

q(t+∆t) ≈ q(t) +
dq

dt

(

t+
∆t

2

)

∆t . (7)

In order to use Eq. (7) to find q(t + ∆t), the value of the charge at the
“new” time t + ∆t, we need to know the value of q(t), the charge of
the “old” time t, and also the derivative dq/dt at the intermediate time
t+ (1/2)∆t. An approximate value for the derivative at time t+ (1/2)∆t
can be found by averaging the values at times t and t+∆t:

dq

dt

(

t+
∆t

2

)

≈
1

2

(

dq

dt
(t+∆t) +

dq

dt
(t)

)

(8)

This approximation assumes, in effect that the derivative at the “average”
time t+ (1/2)∆t is approximately equal to the average of the derivatives
at times t and t + (1/2)∆t. This is only exactly true if q(t) has at most
a quadratic dependence on time. Substitution of Eq. (8) into (7) yields

q(t+∆t) = q(t) +
∆t

2

[

dq

dt
(t) +

dq

dt
(t+∆t)

]

(9)
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In order to clarify the meaning of Eq. (9), we use the subscripts “new” and
“old” to signify quantities evaluated at times t + ∆t and t, respectively.
Therefore Eq. (9) can be rewritten in the form

qnew = qold +
∆t

2
(q′new − q′old) (10)

where the primes indicate derivatives with respect to time. Note that to
calculate a value for qnew, Eq. (10) requires a value for q

′
new. However, we

cannot obtain q′new from Eq. (4) because that requires knowledge of the
very qnew we are trying to find! Euler’s improved method gets around
this circular set of requirements by specifying that we first calculate an
approximate value for qnew using the original Euler’s method, then use
this value in Eq. (4) to find q′new, then use this q

′
new in Eq. (10) to obtain

our final value of qnew. One could alternately recompute qnew and q′new

for the same value of time until the values were unchanged, to the desired
accuracy, from one iteration to the next. However, that is rightly rejected
in the improved Euler method as a waste of time.

2b. Flow Diagram for Euler’s Methods.

initial conditions

q 1

q' -1 q_
old

old old

`

`

T

q' - 1 q_
new new

`

T

q q + q' tnew old old

` D

q q + t(q' + q' )__
2

new old old new

` D

approximate
value for qnew

approximate
value for q'new

improved
value for qnew

Figure 3. Flow diagram for Euler’s method. The dashed
line shows the return path in the loop for the original
method, the solid line for the improved method.
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2c. Sample Calculation Using Improved Euler’s Method. We
can illustrate the improved Euler’s method using the same values for the
parameters used in the illustration of the original Euler’s method: q0 = 1,
T = 1.0, and t = 0.1. As in the original Euler’s method, we first find an
approximate value for q1 using

q1 = q0 + q′0∆t ,

where, for brevity, we have written q(0) as q0 and q(1) as q1. Substituting
T = 1.0 in the differential equation, q′ = −(1/T )q, permits us to write
q′ = − q for any time. We then find this approximate value of q1:

q1 = 1.0 + (−1.0)(0.1) = 0.9 .

We find an improved value for q1 using

q1 = q0 +
∆t

2
(q′0 + q′1)

where the derivative is q′1 = − q1. We therefore obtain

q1 = 1.0 +
1

2
(0.1)(−1.0− 0.9) = 0.905 .

We can repeat the whole procedure in order to find q2, first finding an
approximate value for it from

q2 = q1 + q′1∆t ,

which yields
q2 = 0.905 + (−0.905)(0.1) = 0.8145 .

We then find an improved value using

q2 = q1 +
∆t

2
(q′1 + q′2)

which yields

q2 = 0.905 +
1

2
(0.1)(−0.905− 0.8145) = 0.819 .

The values for q1 and q2 using the improved Euler’s method are much
closer to the exact values (q1 = 0.904, q2 = 0.818) than are the values ob-
tained using the original Euler’s method (q1 = 0.900, q2 = 0.810).

10
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C

R

s

2

V0

1

Figure 4. Circuit to charge capac-
itor

3. Other RC Circuits

3a. Charging Capacitor. In addition to considering the case of a
capacitor being discharged (Fig. 1), we may also examine the time de-
pendence of the charge q(t) for a capacitor being charged by a constant
voltage source V0. Consider the circuit shown in Fig. 4. If switch s is in
position 1 for a long time, and then thrown to position 2 the capacitor
C, initially uncharged, will over time become charged. After a very long
time it will acquire a charge approaching q∞ = CV0.

When the switch s is in position 2 we have:

VR + VC = V0

so that

R
dq

dt
+

q

C
= V0

which can be rewritten as:

q′ =
dq

dt
=
(CVo − q)

T
(11)

where T = RC is the time constant. Equation (11) can be used to solve
for q(t) using Euler’s method just as was done previously for the case of
the discharging capacitor.

3b. Square Wave Voltage Input. The voltage across the RC series
combination in Fig. 4 is zero when switch s is in position 1 and V0 when
it is in position 2. Suppose the switch is repeatedly thrown back and
forth at a regular frequency, and that any one throw takes a negligible
time to complete compared to the time between throws. In that case, the
voltage across the RC series combination has the form of a square wave
such as the one depicted in Fig. 5. A continuous function that closely
approximates a square wave is:

V (t) =
1

2
V0

[

1 +
sinωt

| sinωt|+ .00001

]

(12)
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Figure 5. Square wave input to the circuit in Fig. 4 due to
throwing the switch every π seconds.

The small term .00001 in the denominator is included to avoid the inde-
terminate form 0/0.

3c. Euler Method Solution with Square Wave Input. As far
as the Euler method rules are concerned, the only difference introduced
by solving the RC circuit problem for a square wave input rather than
a constant voltage input is that we must replace the constant voltage
V0 appearing in Eq. (11) with the square wave function V (t) given by
Eq. (12), thus obtaining:

q′ =
dq

dt
=

CV (t)− q

T
(13)

The Euler method algorithm shown in the flow diagram in Fig. 3 will again
give charge q at a series of times, given some initial value q0. However,
Eq. (13) must now be used to obtain q′

old
and q′new at the appropriate

places in the flow diagram.

Although the Euler methods can be used to find approximate solutions for
cases where discontinuous functions are involved, such as in the present
square wave case, those methods must be used with great caution. The
reason is that the methods’ step, ∆t, should be small compared to dis-
tances over which the driving function changes appreciably. There can be
no such step for a discontinuous function.

4. Computer Implementation

4a. Input and Calculation. A program to carry out the calculation
of q(t) for a discharging capacitor using the original Euler method is listed
in this module’s Computer Program Supplement. The program first reads
numerical values for three parameters TAU, DT, and N, where:

12
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0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00
42.00
43.00
44.00
45.00
46.00
47.00
48.00
49.00

1.000
.905
.819
.741
.670
.607
.549
.497
.449
.407
.368
.333
.301
.273
.247
.223
.202
.183
.165
.150
.135
.122
.111
.100
.091
.082
.074
.067
.061
.055
.050
.045
.041
.037
.033
.030
.027
.025
.022
.020
.018
.017
.015
.014
.012
.011
.010
.009
.008
.007

1.000
.900
.810
.729
.656
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.531
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.135
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.052
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.012
.011
.010
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.008
.007
.006
.006
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TAU  10.00000 DT=  1.00000 N= 50.00000

TIME EXACT APROX
Q
+

Q
*

Figure 6. Sample output with TAU = 10, DT = 1, N = 50.

TAU = T (time constant)
DT = ∆t (time step)
N = number of time steps.

After reading the input data, the program proceeds to advance the time
t, step by step, in the sequence: 0, ∆t, 2∆t, 3∆t, . . . , N∆t. For each
value of t the program calculates an exact value for the charge, labeled
Q1, and an approximate value for the charge, labeled Q2, according to
Euler’s method (the original, not the improved method).

4b. Output. On the output the values of time are listed in the first
column (see Fig. 6). The exact values of the charge at each time are
listed in the second column and are plotted graphically as asterisks. The
approximate values of the charge at each time are listed in the third
column and are plotted as plus signs. To read the graph as q against t,
the sample printout in Fig. 6 should be rotated 90◦ counterclockwise.

4c. Scaling of Linear Plots. The graph is produced using a scaling
technique that we shall use for all graphs made on the printer. The printer
can only display characters at a discrete set of positions on a line, and is

13
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therefore not a very accurate plotting device. Given a variable z which
can take on a continuous range of values, we use a linear scaling function
to determine the position on a printed line corresponding to a particular
value of the variable z. We normally use a linear scaling function in
graphing a function of one variable so as not to distort the plot:

M = az + b.

The values of the constants a and b are chosen so that the value ofM stays
within some desired range corresponding to values of z in some specified
range. The value of M is truncated using integer arithmetic, so that M
can be used as the subscript of an array X4. Suppose the array X has
101 elements X1, X2, . . . , X101, which can be printed on one line as 101
single characters. Assume the character “ ” (blank) is first stored in every
element of the array X. We then use the scaling function to store some
other character (for example, “+” or “*”) in a particular element of the
array X corresponding to the value of some variable. When the entire
arrayX1, X2, . . . , X101 is printed on a line, the position of the (non-blank)
character on the line corresponds to the value of the variable.

4d. Plotting the RC Discharge. In the RC circuit program, we have
two variables (Q1 and Q2) to plot, and we shall use scaling functions of
the same form for each:

M1 = 100Q1 + 1

M2 = 100Q2 + 1
(14)

The form of these scaling functions insures that M1 and M2 are always
within the desired range from 1 to 101. (The smallest values that Q1
and Q2 assume are Q1 = Q2 = 0 (at t = ∞) and the largest values are
Q1 = Q2 = 1 (at t = 0).) Is is essential that the correct scaling function
is used, otherwise M1 and M2 might take on values outside the range
from 1 to 101, which can have disastrous consequences when the program
is run on the computer. We can produce the entire graph, with each
successive line of characters corresponding to a different value of the time
t. Once values of M1 and M2 are computed for a specific value of the
time, according to Eq. (14), the program prints out a line of characters
which are all blanks, except for the M1th, which is an asterisk and the
M2th, which is a plus sign.2 Thus the positions of the asterisk and the
plus sign on the line are linearly dependent on the values of Q1 and Q2

2The first and last characters on the line are not blanks. The character “.” is stored

in elements X1 and X101 of the array X to mark the boundaries of the graph.

14
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respectively. After it prints a line of characters, the program repeats the
procedure for a new value of the time; after it prints N lines the graph
is complete. The program then reads another set of data, if any remain,
with a new set of values for TAU, DT, and N. IMPORTANT NOTE : The
scaling in the program assumes 122 characters can be printed out on a
line. If your printer can only print 80 characters on a line, you will need
to change scaling in Eq. (14) by replacing 100 by 50. Also change the
program statement in which 101 elements of the array X are printed so
that you instead print only 51.

5. An Investigative Project

5a. Dependence of Error on Step Size. Enter and run either the
BASIC, FORTRAN, or C++ program, for the original Euler method,
as listed in this module’s Computer Program Supplement. Use at least
three sets of values for TAU, DT and N, with DT varied and TAU held fixed
(you decide what to do with N). Note that TAU, DT and N need to be
appropriately chosen so that the program can handle the computation
and plotting. In particular note that the scaling function used assumes
that the charge varies from 0 to 1. In particular:

a. For one of the runs, use the sample data given in Fig. 6 and check
your output for that case against the output shown in the figure.

b. For some one time (you choose it), plot the error against DT and show
that, for DT small enough, the error varies approximately linearly
with DT and extrapolates to zero error at zero DT.

c. For the time in part (b), plot the approximate answer against DT,
extrapolate DT to zero, determine the corresponding answer, and
compare that answer to the exact answer.

5b. Using a Rapidly Changing Driving Term. Modify the listed
program to deal with a square wave voltage input waveform. The state-
ment in the program where ∆q is found needs to be changed to be con-
sistent with Eq. (13). In other words we want you to use:

∆q =

(

CV (t)− q

T

)

∆t

rather than:
∆q = −

q

t
∆t
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which appears in the original version. Use the value C = 1/2, and, for
V (t), the square wave function given by Eq. (12) with ω = 0.8 and V0 =
1.0. Try running the program using N = 100, TAU=3, and DT=.15. Then
find an answer good to two digits by reducing DT. Be sure to remove the
Q1 solution, as it is inappropriate for this case (why?). For convenience in
reading the plot you might want to simply set Q1 equal to 1/4. Describe
the problem(s) associated with solving the problem when there is such a
fast-changing driving term.

5c. One Euler Method vs. Another. Restore the program to its
original state (the discharging capacitor), and modify it to give a solution
corresponding to the improved Euler method using the flow diagram of
Fig. 3. Run the modified version of the program using various values for
the parameters TAU, DT, and N, and discuss the relative agreement of the
original and improved methods with the exact solution. Plot the error and
the approximate solution against the square of DT and extrapolate to DT =
0 as in part 5a. Compare the actual computation time for the unimproved
and improved Euler methods for a case where the two methods give the
same error and have the same TAU and time. Is it more efficient to use
the unimproved method that requires more cycles or is it more efficient to
use the improved method that requires a greater number of calculations
per cycle?
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A. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

16
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by following the links: → modules→ support programs, where the pro-
grams are:

m350p1f.for, Fortran;
m350p1b.bas, Basic;
m350p1c.cpp, C++;

lib351.h, needed Library for C++ program;

17
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MODEL EXAM

MODEL EXAM

1. Briefly describe the complete algorithm for using Euler’s method to
solve equations of the form: dq/dt=f[q(t),t].

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

2. Submit your annotated output from your run that computed the exact
charge as a function of time on a discharging capacitor in an RC circuit
and the approximate charge as a function of time resulting from a
numerical solution of the differential equation for an RC circuit using
Euler’s original method. Your runs will show:

a. one run using data of Sect. 4a, checked against Fig.6;

b. a graph showing that error decreases linearly with ∆t for small ∆t
and that it extrapolates to the origin;

c. a graph showing that the answer changes linearly with ∆t for small
∆t and comparing the extrapolated answer to the exact answer
(should be close!).

3. Submit your program changes and annotated output from your run(s)
with a square wave input, showing: (a) how the output wave-form
changes as the time constant changes; and (b) remarking on any prob-
lems that arise in dealing with a rapidly-changing driving term.

18
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4. Submit your annotated output from your run with the program (above)
modified so that it computes the charge on a capacitor in an RC circuit
using the improved Euler Method, including:

a. run(s) with the same constants as in item 3 above, but now using the
improved Euler method, showing that it is indeed an improvement
over the simple Euler method;

b. a plot showing that error is linear in (∆t)2 for small ∆t and that
the error extrapolates to the origin;

c. a plot showing that the solution is linear in (∆t)2 for small ∆t and
that the value extrapolates to a value close to the exact one;

d. a comparison of the relative efficiencies of the simple and improved
Euler methods for achieving the same accuracy for the same con-
stants other than ∆t.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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