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Input Skills:

1. Vocabulary: linear charge density (MISN-0-147).

2. Write (or modify) and run programs that utilize advanced pro-
gramming features such as type declarations and loop in FOR-
TRAN (MISN-0-347) or in BASIC.

3. Express the net electric potential at some point in space as an
integral over a continuous charge distribution (MISN-0-147).

Output Skills (Knowledge):

K1. Vocabulary: interpolating polynomial, Simpson’s rule, finite sum
rule, Simpson’s 3/8 rule, trapezoidal rule, weighting coefficients.

K2. Discuss the relative merits of the various interpolating polynomials
from the point of view of the accuracy of the approximation and
the amount of computer time required.

Output Skills (Project):

P1. Compute and graph the error for the approximate electric po-
tential resulting from a numerical integration using interpolating
polynomials of zeroth order (finite sum rule), first order (trapex-
oidal rule), and second order (Simpson’s rule).

P2. Determine the convergence of the approximate electric potential
resulting from a numerical integration for third order interpolating
polynomial (Simpson’s 3/8 rule) and fourth order interpolating
polynomial (Bode’s rule).

P3. Calculate and explain the convergence and the dependence of the
errors on k, when calculating the approximate electric potential
for a non-uniform charge density of the form λ(x) = cos(kπx) via
second, third and fourth order polynomials.

External Resources (Required):

1. A computer with BASIC or FORTRAN.
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NUMERICAL INTEGRATION

by

Robert Ehrlich
George Mason University

1. Numerical Integration Algorithms

1a. Introduction. In this module algorithms for numerical integration
are developed. The definition of the integral of a function f(x) is such
that the integral

I =

∫ b

a

f(x) dx .

can be numerically approximated by the finite sum:

IN =

N
∑

j=1

f(xj)∆x (1)

where

∆x =
(b− a)

N − 1
.

The accuracy of the approximation obviously increases as an N is in-
creased, in view of the definition:

lim
N→∞

IN .

This procedure is graphically illustrated in Fig.1. Including more terms in
the sum for IN invariably means more computer time, therefore we wish
to find methods of obtaining better approximation to an integral that do
not increase N . One method uses “weighting coefficients” c1, c2, ...cN in
the sum:

IN =
N

∑

j=1

cjf(xj)∆x (2)

The usefulness of this method hinges on the fact that the weighting coef-
ficients do not depend on the particular function f(x), but can be found
using the appropriate interpolating polonomial.
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Figure 1. Approximation of the integral by a finite sum.

1b. Trapezoidal Rule. The simplest interpolation method is to as-
sume the function f(x) varies linearly in between each pair of consecutive
points xj and xj+1. In this case we are geometrically approximating the
area under the function f(x) by a series of trapezoids rather than a series
of rectangles (see Fig.2). The area of consecutive trapezoids are given by

A1 =
1

2
[f(x1) + f(x2)]∆x

A2 =
1

2
[f(x2) + f(x3)]∆x

.

.

.

AN−1 =
1

2
[f(xN−1) + f(xN )]∆x

For the total area we, therefore, have

A =
1

2
f(x1) +

N−1
∑

j=2

f(xj)∆x+
1

2
f(xN )
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Figure 2. Trapezoidal approximation to the integral.

which can be expressed in the form of Eq.(2) provided: c1 = cN = 1/2,
and cj = 1 otherwise. In order to find the weighting coefficients
c1, c2, ...cN corresponding to other higher order approximations, we need
to use curves other than straight lines which pass through the points
x1, x2, ...xN at which the function f(x) is defined.

1c. Interpolating Polonomials. Given a set of N distinct points in
a plane: (x1, y1), ...(xN , yN ), a unique polonomial of (N − 1)

th order can
be made to pass through the points. For example, a unique second order
polonomial (parabola) passes through any three points (x1, y1), (x2, y2)
and (x3, y3). It is surprisingly easy to write the equation of the interpo-
lating polonomials. In the case N = 3, for example, the proper equation
is:

y = f(x) = Ay1 +By2 + Cy3 (3)

where

A ≡ A(x) = (x− x2)(x− x3)/∆x
2,

B ≡ B(x) = (x− x1)(x− x3)/∆x
2,
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C ≡ C(x) = (x− x1)(x− x2)/∆x
2.

We can easily check that this is the correct equation by observing that:

(1) The coefficients A, B, C are quadratic functions of x, so that y(x)
is, in fact, a second order polonomial.

(2) When x = x1, we have A = 1 and B = C = 0, so that y = y1.

(3) When x = x2, we have B = 1 and A = C = 0, so that y = y.

(4) When x = x3, we have C = 1, and A = B = 0, so that y = y.

Similar interpolating polonomials can be written down by inspection for
any order N . Help: [S-1]

1d. Simpson’s Rule. The geometrical basis of Simpson’s rule is that
a parabola is passed through each three consecutive points at which the
function f(x) is defined. The area under this series of parabolas approx-
imates that under the function f(x). The area under the first parabola
can be easily obtained by integrating Eq.(3) from x1 to x3. The result for
the area under the first parabola is:

A1 =
∆x

3
(y1 + 4y2 + y3),

where ∆x = x2 − x1 = x3 − x2. Similarly, the area under the parabola
passing through the next three points in sequence is given by:

A2 =
∆x

3
(y3 + 4y4 + y5)

and so on for any remaining parabolas. The total area under all the
parabolas may be easily seen to be given by:

A =
∆x

3
(y1 + 4y2 + 2y3 + 4y4 + ...+ 4yN−1 + yN )

Recalling that y = f(x), we may easily express this as another special case
of Eq.(2):

IN =

N
∑

j=1

cjf(x)∆x
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where we now have: c1 = cN = 1/3, and otherwise cj = 4/3 for j even,
or cj = 2/3 for j odd. The use of Simpson’s rule requires that N be an
odd number, since otherwise we cannot cover all N points using a series
of parabolas each of which connects three points.

1e. Higher Order Approximations. The procedure for carrying out
still higher order approximations to an integral is the same as that which
has already been used for the trapezoidal rule and Simpson’s rule. For
example, suppose that we wish to approximate the function f(x) by a
series of third order polonomials. In that case, we first write down the
form of the appropriate interpolating polonomial and integrate it to obtain
the coefficients c1. These coefficients which have been tabulated in the
fourth row of Table 1 are the same for any function f(x) that we wish to
integrate. The integral can then be found directly from Eq.(2). In order
to use a series of third order polonomials to approximate f(x) there must
be at least N = 4 points, and furthermore N − 1 must be divisible by 3.
In Table 1 we also show the proper coefficients cj to use for polonomials
of order 4 as well. In this case N − 1 must be divisible by 4, so that an
even number of 4th order polonomials can cover all the points. In the next
section we consider a specific physical problem to which we shall apply
these numerical integration methods.

9

MISN-0-349 6

Table 1. Values of coefficients appearing in mth

order interpolating polynomial
m 0 1 2 3 4
Name finite trapazoidal Simpson’s Simpson’s Bode’s

rule rule rule 3/8 rule rule
Minimum
n 1 2 3 4 5
allowed
Other
restrictions none none n = 2k + 1∗ n = 3k + 1∗ n = 4k + 1∗

on n
c1 1 1/2 1/3 3/8 14/45
c2 1 1 4/3 9/8 64/45
c3 1 1 2/3 9/8 24/45
c4 1 1 4/3 3/4 64/45
c5 1 1 2/3 9/8 28/45
c6 1 1 4/3 9/8 64/45
c7 1 1 2/3 3/4 24/45
c8 1 1 4/3 9/8 64/45
c9 1 1 2/3 9/8 28/45
. . . . . .
. . . . . .
. . . . . .
cN−4 1 1 2/3 9/8 28/45
cN−3 1 1 4/3 3/4 64/45
cN−2 1 1 2/3 9/8 24/45
cN−1 1 1 4/3 9/8 64/45
cN 1 1/2 1/3 3/8 14/45

∗ k can be any positive integer

2. Potential for a Charged Thin Wire

2a. Introduction. In order to calculate the potential for a charged
thin wire, we can assume that the net charge on the wire consists of a row
of closely spaced point charges. We can easily calculate the potential V at
any point (x, y) in a plane containing the wire using Eq.(4). In practice,
however, the number of excess electrons on a charged wire is usually so
large that we can regard the charge on the wire as continuously distributed
along its length, and speak of a line of charge. Mathematically, what we
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have done is to replace the finite sum appearing in Eq.(4) by an integral.
Suppose each of the N point charges in the row has a value ∆q, such that
the total charge of all the N charges is a constant q, independent of N .
Then, by definition of a definite integral, the finite sum

V =
N

∑

j=1

∆q

rj
(4)

approaches the integral

V =

∫

dq

r
(5)

in the limit as N becomes infinite and ∆q tends to zero.1

2b. Transforming the Integral. Let us put the integrand in Eq.(5)
in a form which can be directly evaluated. We choose the x-axis to lie
along the wire, and we assume that the wire extends from x = −a to
x = +a. The charge dq contained within a given length of wire dx is
given by

dq = λ(x)dx (6)

where λ(x) is some function which gives the linear charge density at po-
sition x. The factor r in Eq.(5) is the distance from a point (x, 0) on the
wire to some point (x0, y0), at which we wish to find the potential (see
Fig.3), and r is given by

r =
√

(x− x0)2 + y2
0 (7)

Substitution of Eqs.(6) and (7) into (5) yields

V (x0, y0) =

∫ +α

−α

λ(x)
√

(x− x0)2 + y2
0

dx. (8)

1For a deeper discussion of this transition from discrete sums to integrals, see “Elec-
trostatic Potential Due to a Continuous Charge Distribution,” (MISN-0-147).
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Figure 3. A charged thin wire.

2c. Exact Solution for a Special Case. For the case of a wire that
has charge uniformly distributed along its length, the function λ(x) is
simply a constant λ0. In this case, the integral in Eq.(8) can be directly
evaluated, to give

V (x0, y0) = λ0 `n

{

√

(x0 − α)2 + y2
0 − (x0 − α)

√

(x0 + α)2 + y2
0 − (x0 + α)

}

(9)

There are only a few special cases [such as λ(x) constant] for which the
integral in Eq.(8) can be directly evaluated. In other cases, we must use
approximate numerical integration techniques, such as those discussed
in the previous section, to calculate the integral. Knowing the exact
solution for λ(x) constant serves as a valuable check on the accuracy of
the approximate numerical methods.

3. Computer Implementation

3a. Input. The program first reads numerical values for the parameters
N, A, X0, and Y0 where

N = n the number of terms in the sum
A = α half the length of the wire, which extends

from −α to +α
X0 = x0 coordinates at which the potential
Y0 = y0 is to be found.

12



MISN-0-349 9

Three sample sets of data include:

N A X0 Y0

1st 3.0 1.0 0.0 1.0
2nd 10.0 1.0 0.0 1.0
3rd 100.0 1.0 0.0 1.0

3b. Output. The program calculates the exact potential (V1) and
three approximate potentials based on: The finite sum (V2), the trape-
zoidal rule (V3) and Simpson’s rule (V4) according to Eq.(2). The exact
result only holds for the special case λ(x) = λ0 = 1. The output corre-
sponding to the sample input is as follows:

N = 3.00000 A = 1.00000 X0 = .00000 Y0 = 1.00000
V1 = 1.76275 V2 = 2.41422 V3 = 1.70711 V4 = 1.80474
N = 11.00000 A = 1.00000 X0 = .00000 Y0 = 1.00000
V1 = 1.76275 V2 = 1.90181 V3 = 1.76039 V4 = 1.76275
N = 101.00000 A = 1.00000 X0 = .00000 Y0 = 1.00000
V1 = 1.76275 V2 = 1.77687 V3 = 1.76273 V4 = 1.76275

Note that if N is an even number, as in the second and third cases, the
program actually uses the next higher odd integer. The reason for this is
that Simpson’s rule can only be used with odd values of N, and we want
to compute V1, V2, V3, and V4 all for the same value of N. Then we can
compare the various approximation methods at the same value of N.

4. Procedures

4a. Original Program - Dependence on N. Run the program using
these values of the input parameters:

A X0 Y0

1.0 0.0 1.0

and N = 3, 11, 31, 101, 301. For each of the three approximations: finite
sum (V2), trapezoidal (V3), and Simpson’s rule (V4), compute the error
which is the difference from the exact solution (V1). Make a graph of the
error as a function of log N for each of the three approximations. How do
the three rates of convergence compare? How did the program execution
time depend on N.

4b. Original Program - Dependence on Y0. Run the program
using these values of the input parameters:
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N A X0

11 1.0 0.0

and Y0 = 1.0, 3.0, 10.0, 20.0, 30.0, and 100. Compute the errors for each
of the three approximations as in the procedure in paragraph 4a, and plot
a graph of the errors as a function of log Y0 in each case. Explain why
the errors are found to decrease with increasing Y0. Hint: How does the
shape of the integrand change as Y0 is increased?

4c. Modified Program - Higher Order Approximations. Modify
the program so that it includes the third and fourth order interpolating
polonomials for the numerical integration. Help: [S-1] You will need to
explicitly calculate the coefficients listed in the fourth and fifth rows of
Table 1 in terms of the running index J. Run the modified program and
follow the procedure in paragraph 4a to see how rapidly these two higher
order approximations converge with N.

4d. Modified Program - Non-Uniform Charge Distribution.
Modify the program so that it calculates the potential due to a charged
wire having a nonuniform charge density. One interesting function is
λ(x) = cos(kπx) which changes sign k − 1 times along the length of the
wire. You should modify the program so that the parameter k can be
read in along with the other input parameters: N, A, X0, and Y0. Note,
that in this case the exact solution cannot be obtained, so that the value
calculated for V1 is meaningless. Choose the input parameters as follows:

N A X0 Y0

101 1.0 0.0 1.0

and k = 1, 3, 10, 30, 100. If there is very little difference between the three
approximations V2, V3 and V4 then all of these are very good approxi-
mations and they are close to the exact solution. The best approximate
of the three will be the one that is highest order (V4). The differences
V2 − V4 and V3 − V4 are one measure of the error of V2 (finite sum) and
V3(trapezoidal) approximations. How are these errors found to depend
on k? Explain this result.
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Glossary

• interpolating polynomial:: a polynomial of order N which exactly
passes through (N + 1) given points, useful for interpolating between
the points.

• trapezoidal rule:: the integral is a multiplier times the sum of the
integrand values at variable-of-integration points that are evenly spaced
between the limits of integration, except that the values at each of the
end points has a relative weight that is 1/2 the weight of each of the
other values. The multiplier is the distance between successive values
of the variable of integration.

• Simpson’s rule:: a rule for finding a definite integral by: (i) breaking
the variable of integration into (1+2n) evenly spaced points that begin
and end with the limits of integration, where n is any positive integer;
(ii) summing the values of the integrand at those points, using weight-
ing coefficients proportional to (1, 4, 2, 4, 2, ..., 2, 4, 2, 4, 1); and (iii) mul-
tiplying the sum by the distance of integration and dividing by the sum
of the weighting coefficients.

• Finite sum rule:: this rule is similar to Simpson’s rule (see above)
except that: (i) the variable of integration can be broken up into any
number of equal intervals; (ii) the integrand is evaluated at the mid-
points of the intervals; and (iii) the weighting coefficients proportional
to (1, 1, 1, 1...1, 1, 1, 1).

• Simpson’s 3/8 rule:: similar to Simpson’s rule (see above) except
that: (i) (1 + 3n) evenly spaced points; (ii) the weighting coefficients
are proportional to (3, 9, 9, 6, 9, 9, 6, ..., 6, 9, 9, 3).

• Weighting coefficients in integration rules:: a term which always
refers to numbers that multiply the numerical values of the integrand
being summed to obtain an integral. Some authors multiply all of
the coefficients (for a given rule) by some constant factor and some
authors show them as including the point-to-point integration interval.
The wise user determines what constant multiplier to use with any
particular set of coefficients by using them on a constant integrand.

A. Fortran, Basic, C++ Programs

All programs are at
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http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:

m349p1f.for, Fortran;
m349p1b.bas, Basic;
m349p1c.cpp, C++;
lib351.h, C++;
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-4e)

For the third order plonomial which passes through the four points
(x1, y1), (x2, y2), (x3, y3), (x4, y4), the correct form is:

y(x) = Ay1 +By2 + Cy3 +Dy4

where:

A = (x− x2)(x− x3)(x− x4)/∆x
3

B = (x− x1)(x− x3)(x− x4)/∆x
3

C = (x− x1)(x− x2)(x− x3)/∆x
3

D = (x− x1)(x− x2)(x− x3)/∆x
3
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MODEL EXAM

1-2. See Output Skills K1-K2 in this module’s ID Sheet.

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

3. Submit your annotated computer output that shows your runs of the
original program in the module, pointing out how the errors in the
three lowest order approximations for the integrals depend on:

a. the number of intervals, N, and

b. the y-coordinate of the point at which the potential is found.

4. Submit your annotated computer output that shows how the higher
order approximations to the integral depend on N, the number of terms
in the sum.

5. Submit your annotated computer output that shows results and rele-
vant discussion of them for the modified program that calculates the
potential at a point in space due to a charged wire with a linear charge
distribution given by λ(x) = cos(kπx).

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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