
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-347

ADVANCED FEATURES OF FORTRAN

R E A D ( 5 , 1 0 0 ) A , B , C

D I S C R = B * * 2 - 4 . 0 * A * C

I F ( D I S C R ) 1 0 , 2 0 , 2 0

1 0 C A L L E X I T

2 0 C O N T I N U E

R O O T 1 = ( - B + S Q R T ( D I S C R ) ) / 2 . * A

R O O T 2 = ( - B - S Q R T ( D I S C R ) ) / 2 . * A

W R I T E ( 6 . 1 0 1 ) R O O T 1 , R O O T 2

G O T O 1 0

1 0 0 F O R M A T ( 3 F 1 0 . 5 )

1 0 1 F O R M A T ( 2 F 1 0 . 5 )

READ

A, B, C

DISCR = B - 4AC2

DISCR<0
YES

STOP

WRITE

ROOT1,

ROOT2

ROOT2 = (–B+ DISCR)/2A

ROOT1 = (–B+ DISCR)/2A

NO

1

ADVANCED FEATURES OF FORTRAN

by

Robert Ehrlich
George Mason University

1. Overview

2. Arrays and the Dimension Statement
a. Definition of an Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
b. Storage of Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
c. The DIMENSION Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
d. Variable Array Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
e. Multiple Array Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

3. The Do Statement
a. DO Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
b. Sample Program Using a DO Loop . . . . . . . . . . . . . . . . . . . . . . . 3
c. Premature Exit from a DO Loop . . . . . . . . . . . . . . . . . . . . . . . . . 4
d. Nested DO Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
e. Improper DO Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Format Statements
a. Common FORMAT Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
b. Illustration of Common Format Specifications . . . . . . . . . . . 8
c. Carriage Control in FORMAT Statements . . . . . . . . . . . . . . . . . . 9

5. Special Formats
a. DATA Statement: An Alternative I/O . . . . . . . . . . . . . . . . . . . 10
b. Numerical and Non-Numerical Data . . . . . . . . . . . . . . . . . . . . 10
c. The “A” Format is Used for Non-Numerical Data . . . . . . . 11
d. The “X” Format Is Used To Print Blanks . . . . . . . . . . . . . . . 11

6. Type Declaration Statements
a. DOUBLE PRECISION Type Declaration . . . . . . . . . . . . . . . . . . . 12
b. REAL and INTEGER Type Declarations . . . . . . . . . . . . . . . . . . 12
c. COMPLEX Type Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
d. Location of Type Declarations . . . . . . . . . . . . . . . . . . . . . . . . . .12

7. Some Sample Problems
a. Maximum of a One-variable Function . . . . . . . . . . . . . . . . . . 12
b. Maximum of a Two-variable Function . . . . . . . . . . . . . . . . . 13

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A. Structured Fortran Specifications . . . . . . . . . . . . . . . . . . . . . 15

2



ID Sheet: MISN-0-347

Title: Advanced Features of Fortran

Author: Robert Ehrlich, George Mason University, Physics Department

Version: 2/1/2000 Evaluation: Stage 0

Length: 1 hr; 20 pages

Input Skills:

1. Vocabulary: double precision, round-off error, triple precision
(MISN-0-370).

2. Write (or modify) and run simple programs using elementary
FORTRAN, such as the COMMENT, IF, GOTO, CALL EXIT, CONTINUE,
END, READ, and WRITE statements (MISN-0-346).

Output Skills (Knowledge):

K1. Vocabulary: echo check, matrices, nested loops.

Output Skills (Rule Application):

R1. Recognize and write valid FORTRAN statements involving ar-
rays with multiple and variable indices, including the use of the
DIMENSION statement.

R2. Write valid DO loops (simple and nested), and recognize and correct
invalid DO loops.

R3. Recognize and write valid FORMAT statements, including the F, E,
I, H, A, and X formats, and use the FORMAT statement for carriage
control.

R4. Use the DATA statement to initially assign the value of any variable.

R4. Use the TYPE statement to set the precision of a variable, declare
a complex variable, or override the standard FORTRAN designa-
tions of real and integer variables.

Output Skills (Project):

P1. Enter and run “canned” programs to numerically calculate the
maximum of one- and two-variable functions.

External Resources (Required):

1. A computer with FORTRAN.

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4



MISN-0-347 1

ADVANCED FEATURES OF FORTRAN

by

Robert Ehrlich
George Mason University

1. Overview

In another module some of the basic elements of the FORTRAN lan-
guage are described.1 Using those basic elements it should be possible to
write and run simple FORTRAN programs. More complex programs re-
quire a knowledge of some of the features described in the present module,
especially the important DO and DIMENSION statements. These statements
and others will be illustrated at the end of this module in a program that
computes values for arbitrary functions of one and two variables and al-
lows you to find the function’s maximum value.

2. Arrays and the Dimension Statement

2a. Definition of an Array. It is sometimes convenient when dealing
with a number of closely related variables not to give each one a different
name, but to distinguish among them by an index. This is entirely anal-
ogous to the use of subscripts in mathematical notation. In FORTRAN,
indices must be enclosed in parentheses. For example, these statements
might appear in a program:

Q(1) = 2.0

Q(2) = 5.2

The two variables Q(1) and Q(2) are called “the elements of the array
Q.” The parentheses are crucial: if two variables are named Q1 and Q2

then they do not thereby constitute elements of an array and they do not
thereby have any relationship to either the array Q or to each other.

2b. Storage of Arrays. Each element of an array corresponds to a
different location in the computer memory. Normally the elements of an
array are stored in a contiguous block of memory locations. Thus, the
index in parentheses refers to a particular memory location within the
block. For this reason, the index must always be a positive integer that

1See “Review of Elementary FORTRAN” (MISN-0-346).
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does not exceed the total number of memory locations within the block
reserved for the particular variable.

2c. The DIMENSION Statement. The number of locations to be re-
served for each array must be specified in a DIMENSION statement, usually
placed near the beginning of a program. As an example, consider this
DIMENSION statement:

DIMENSION X(10), Q(5), Z(1000)

This statement specifies that 10 memory locations should be reserved for
the array X, 5 for the array Q, and 1000 for the array Z. In this case,
it would therefore be perfectly legitimate to have the following array ele-
ments referred to in a program which contained this DIMENSION statement:
X(8), Q(5), Z(982). However, any references to X(11), Q(9), Z(1027),
X(0), Q(-2), or Z(3.64) would not be legitimate.

2d. Variable Array Indices. The indices used to refer to an ele-
ment of an array may be variables or mathematical expressions as well as
constants. For example, the following are completely valid statements:

X(J) = 2

X(2 ∗ K+ 1) = 10

provided that J and K have been assigned numerical values in some pre-
vious statements and that the values of the expressions in parentheses
are within the ranges specified by the appropriate DIMENSION statements.
On many computers the most complicated expression permitted for the
index of an array is c1× v+ c2, where c1 and c2 represent two fixed point
constants and v represents a fixed point variable. Thus, for example, the
following statement would not be permitted:

X(K ∗ ∗2+ 2 ∗ K) = 10

2e. Multiple Array Indices. Just as variables in mathematics may
have more than one subscript, so also variables in FORTRAN may have
more than one index. The number of indices specifies the number of
dimensions of the array. For example, the elements of a two-dimensional
array Y might include Y(1,1), Y(1,6), Y(2,3), and Y(3,5). The size of
arrays of more than one dimension must also be specified in a DIMENSION

statement. The statement
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DIMENSION Y(4,10)

specifies that the first index of the two-dimensional array Y can take on
values 1, 2, 3, 4, and the second index can take on values 1, 2, ..., 10. The
statement therefore specifies that a block of 4 × 10 = 40 memory loca-
tions be reserved for the array Y. One-dimensional arrays are sometimes
called “vectors” and two-dimensional arrays are called “matrices.” On
many computers arrays of more than three dimensions are not permit-
ted.

3. The Do Statement

3a. DO Loops. A loop in a program can be created using the GOTO and
IF statements: an alternative method is to use the DO statement. We can
illustrate the meaning of the DO statement through an example:

DO 5 K = 7,87

This statement instructs the computer to execute repeatedly all the state-
ments that follow, up to and including statement number 5, setting the
loop index K equal to 7 initially and increasing it by one each time through
the loop, until it reaches 87, which is the last time through the loop. Thus
the loop is to be executed 81 times. From the meaning of the DO state-
ment, it should be clear that the following two sets of instructions are
equivalent:

C EXAMPLE OF A LOOP C EXAMPLE OF A LOOP
C USING AN IF STATEMENT C USING A DO STATEMENT
C C

N=6 DO 2 N=7,100
1 N=N+1 .

. .

. .

. 2 CONTINUE
IF(N−100)1,1,2 .

2 CONTINUE .
. .
.

3b. Sample Program Using a DO Loop. To illustrate how a DO

statement might be used in a program, we show a program which reads
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in numerical grades for some number of students and computes an average
grade. As indicated in this example, the upper and/or lower limit on the
loop index specified in the DO statement may be either a variable or a
constant. Many COMMENT statements have been used to explain the role
of the statements in this program:

C READ A NUMERICAL VALUE FOR N, THE NUMBER OF
GRADES:

READ(2,100)N
C SET THE SUM OF THE GRADES TO ZERO INITIALLY:

SUM=0.
C REPEAT ALL INSTRUCTIONS UP TO STATEMENT NO.\,10,
C FOR J=1,2...,N:

DO 10 J=1,N
C READ A DATA CARD CONTAINING A GRADE:

READ(2,101)GRADE
C ADD THIS GRADE TO THE SUM:
10 SUM=SUM+GRADE

C LET FN BE THE FLOATING POINT EQUIVALENT OF N:
FN=N

C COMPUTE THE AVERAGE GRADE:
AVG=SUM/FN

C PRINT THE RESULT:
WRITE(3,102)AVG

C STOP THE PROGRAM.
CALL EXIT

100 FORMAT(I10)
101 FORMAT(F10.5)
102 FORMAT(19H THE AVERAGE GRADE=,F10.5)

END

3c. Premature Exit from a DO Loop. If a loop defined by a DO

statement contains one or more IF statements, the program may execute
the loop fewer times than is specified in the DO statement. An example of
such a premature exit from the loop is given in the program below. Note
that when a premature exit occurs, the latest value of the loop counter is
saved and may be used in another part of the program.

C THIS PROGRAM WAS WRITTEN TO READ 100 CARDS, EACH
C CONTAINING A NUMBER, AND TO INDICATE WHICH IS THE
C FIRST CARD OUT OF SEQUENCE (THAT IS, THE FIRST
C CARD THAT HAS A NUMBER SMALLER THAN THE PRECEDING

8
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C CARD).
C

DIMENSION NUM(100)
READ(2,100)NUM(1)
DO 10 J=2,100
READ(2,100)NUM(J)

C
C THE FOLLOWING STATEMENT CAUSES A JUMP OUT OF THE
C LOOP (TO STATEMENT 20) IF NUM(J) IS LESS THAN
C NUM(J−1), THE PREVIOUS NUMBER:

IF(NUM(J)−NUM(J−1))20,10,10
10 CONTINUE

GO TO 30
20 WRITE(3,100)J
30 CALL EXIT
100 FORMAT(I10)

END

3d. Nested DO Loops. In many programs a loop may be contained
within another loop. Such “nested loops” can easily be created using DO

statements as indicated in this example:

C AN EXAMPLE OF NESTED DO LOOPS
C

DO 20 J=1,5
| .
| .
| .
| DO 10 K=1,25
| | .

outer | inner | .
loop | loop | .

| | 10 CONTINUE
| .
| .
| .
| 20 CONTINUE

In this example the computer is instructed to execute the outer loop 5
times: J = 1, 2, ..., 5. Each time through the outer loop it is instructed
to execute the inner loop 25 times: K = 1, 2, ..., 25. Thus the inner loop
is executed a total of 5 × 25 = 125 times. Any number of loops may

9
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be contained within a loop: this includes the possibility of loops within
loops within loops. Some possibilities are shown schematically in Figure 1.
Figure 1c indicates that nested loops may have a single last statement in
common.

3e. Improper DO Loops. An ambiguous structure such as the one
shown below is not allowed, since neither loop is contained within the
other.

C THIS FORM IS NOT LEGITIMATE!
C

D0 20 J=1,5
| DO 10 K=1,25
| | .
| | .
| | .
| | 20 CONTINUE

| .
| .
| .
| 10 CONTINUE

.

.

Using the loop index to the left of an equal sign anywhere within a loop is
also not allowed, since this redefines its value and the loop is not executed
the proper number of times. For a similar reason the variable names used
as loop indices in nested DO loops must be different. However, instructions
outside of a loop may use the variable name used as the loop index in some
different way.

In the following examples, (a) and (b) are not legitimate DO loops, while
(c) and (d) are legitimate.

C AN IMPROPER USE OF C AN IMPROPER USE OF
C THE LOOP INDEX WITHIN C THE SAME LOOP INDEX
C A DO LOOP C IN NESTED DO LOOPS

DO 10 J=1,3 DO 10 J=1,5
. .
. .

J=1 DO 6 J=1,3
10 CONTINUE .

10
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. .

. 6 CONTINUE

. 10 CONTINUE

. .
(a) (b)

C IT IS OK TO USE THE C IT IS OK TO USE THE
C SAME VARIABLE AS A C LOOP COUNTER
C LOOP INDEX AS C VARIABLE NAME IN
C LONG AS THE LOOPS C SOME OTHER WAY IN
C ARE NOT NESTED. C INSTRUCTIONS THAT ARE

DO 10 J=1,10 C OUTSIDE THE LOOP.
. C
. DO 10 J=1,10

10 CONTINUE .
DO 20 J=1,30 .
. 10 CONTINUE
. J=1

20 CONTINUE .
. .
. .

(c) (d)

4. Format Statements

4a. Common FORMAT Statements. A FORMAT statement contains
a string of format specifications separated by commas. For example:
100 FORMAT(F11.5,E15.5,I6,29H ARE THE VALUES OF A,B,and N)

This statement contains four types of format specifications:
F floating point variables.
E floating point variables, expressed in exponential form.
I integer (fixed point) variables.
H specific strings of characters of any length, used to print

labels or titles on the output.

The meaning of the four format specifications in the sample FORMAT state-
ment is:

F11.5: specifies that the quantity to be read or written is a floating point
number occupying 11 spaces and has five digits after the decimal
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point. For example, −45.12347: in this case, two blank spaces must
be added in front of the number, in order that it occupy a total of 11
spaces counting the sign and the decimal point. If the same number
were written in F6.2 format it would appear as −45.12, with no
leading blanks. Finally, if we attempted to write the number in
F5.2 format, we might get *****, meaning “it can’t be done.”

E15.5: specifies that the quantity to be read or written is a floating point
number in exponential (power of ten) form. It occupies a total of
15 spaces with 5 digits after the decimal point, for example,

0.89993E − 12 (which is 0.89993× 10−12).

Note that in this case four blank spaces must appear in front of the
number in order that it occupy a total of 15 spaces.

I6: specifies that the quantity to be read or written is an integer which
takes up 6 spaces, for example, −12345.

29H ARE THE VALUES OF A, B, AND N: the “29H” specifies that the 29
characters: “ARE THE VALUES OF A, B, AND N” are to be written
exactly as they appear. Unlike the three preceding formats, the H

format does not refer to any variable that appears in a READ or a
WRITE statement; it is simply used to write out a specific string of
characters. On some computers the characters to be written need
only be enclosed in single quotation marks, avoiding the need for a
character count, i.e., 29 in this case.

A FORMAT statement, as noted elsewhere2, may be referred to by one or
more READ or WRITE statements. Two other types of format specifications,
the A format and the X format, are discussed in Section 5.

4b. Illustration of Common Format Specifications. Use of the
F, E, I, and H format specifications is illustrated in this program:

C ILLUSTRATION OF A FORMAT STATEMENT USING F,E,I,
C AND H FORMAT SPECIFICATIONS
C

A=4.0/3.0
B=25000.
N=67
WRITE(3,100)A,B,N

2See “Review of Elementary FORTRAN” (MISN-0-346).
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100 FORMAT(F10.5,E10.5,I4,29H ARE THE VALUES OF A,
B, AND N)
CALL EXIT
END

When this program is executed, the values of A, B, and N will be written
out on device number 3, according to the format specifications in FORMAT

statement 100. Assuming that device number 3 is the printer, this line
would be printed: 1.33333 0.25E+5 67 ARE THE VALUES OF A,B, AND

N

4c. Carriage Control in FORMAT Statements. As another example,
suppose the FORMAT statement in the program were replaced by:

100 FORMAT(30H1 A B N//
1F11.5,E15.5,I6)

The first format specification in this FORMAT statement indicates that the
30 characters (including blanks) which follow the “30H1” are to be printed
exactly as they appear (this includes everything up to the two slashes).
The “1” functions as a control character. There are three useful control
characters, which are used to control the way a line is printed out on a
printer, typewriter, or teletypewriter:

control character meaning :

(blank) Print this line and advance to the next.
1 Skip to a new page, then print this line and advance to the next.
+ Print this line but don’t advance to the next.

In the FORMAT statement we are presently considering, the computer is in-
structed to advance the printer to a new page and then print the heading:
“A B N”. The two slashes (//) which come after the 30H format instruct
the computer to skip two lines before printing anything further. Thus the
actual numerical values for A, B, and N appear on the third line after the
heading:

A B N

1.33333 0.25000E+5 67

Note that if the numerical value of A had actually needed the alloted
eleven positions, the leading digit “1” would be the first character on
the line and would cause the printer to (unintentionally) skip to a new
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page and not print that leading digit. There are other types of formats
in addition to the F, E, I and H; we shall discuss one of them in the next
section.

5. Special Formats

5a. DATA Statement: An Alternative I/O. Two methods by which
variables in a FORTRAN program can be given numerical values are the
READ statement and the assignment statement: the DATA statement pro-
vides a third alternative. An example of a DATA statement is // DATA

A,B,C,KOUNT/1.0,2.0,5.7,13/ which is equivalent to the four assign-
ment statements:

A = 1.0

B = 2.0

C = 5.7

KOUNT = 13

There is, however, one difference: the DATA statement(s) must always be
placed at the beginning of a program, whereas the assignment statements
may appear anywhere.

5b. Numerical and Non-Numerical Data. DATA statements can be
used to define nonnumerical quantities as well as numerical ones. If we
have this DATA statement in a program://

DATA X,Y,Z,DOG/’B’,’+’,’ ’,’FLEA’/

then during execution, the letter “B” is stored in the variable X, the char-
acter “+” is stored in the variable Y, the character (blank) is stored in
the variable Z, and the sequence of letters “FLEA” is stored in the vari-
able DOG.3 The maximum number of characters that can be stored in one
variable usually ranges from four to six depending on the word size of the
computer. If letters or other characters are stored in a variable it does not
make any sense to use the variable in performing arithmetic operations
(e.g., it makes no sense to add the letter “B” to the character “+”). A
non-numerical variable can be used in assignment statements which do
not involve any arithmetic operations, as in this example:

3On some computers, it is necessary to use the H format specification instead
of the single quotation marks, in which case this statement would be written DATA

X,Y,Z,DOG/1HB,1H+,1H,4HFLEA/
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DATA DOG/’FLEA’/
CAT=DOG

This DATA statement instructs the computer to store the letters “FLEA” in
the variable DOG. The assignment statement then stores the value of DOG
(which is “FLEA”) in the variable CAT.

5c. The “A” Format is Used for Non-Numerical Data. In order
to read or write quantities consisting of strings of characters we may use
the A format, as shown in this example:

DATA DOG/’FLEA’/
CAT=DOG
WRITE(3,110)CAT

110 FORMAT(A4)
CALL EXIT
END

During execution of this program the WRITE statement specifies that the
value of the variable CAT (‘‘FLEA’’) be printed in A4 format, as indi-
cated in FORMAT statement 110. But since the first character on a line
is assumed to be a control character, the F in “FLEA” is interpreted as
a control character, and the printed message consists of the remaining
characters “LEA”. It is desirable, therefore, to have the printer skip one
or more spaces on the line before the first character appears.

5d. The “X” Format Is Used To Print Blanks. Although the H

format could be used to print blank spaces, we usually use the X format.
For example, if we want the printer to skip the first 10 spaces on a line
and then print the characters “FLEA” we need only modify the FORMAT

statement to read:

110 FORMAT(10X,A4)

Thus the X format is used to skip over some number of spaces, leaving
them blank. The A format is used to print a string of characters that
is stored as a specific variable, the H format is used to print a string of
characters not associated with a variable, and the X format is used to
print a string of blank spaces.
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6. Type Declaration Statements

6a. DOUBLE PRECISION Type Declaration. The method of specifying
that calculations involving particular variables be treated using double
precision is to include those variables in a DOUBLE PRECISION statement
at the beginning of the program. For example, the statement

DOUBLE PRECISION X,Y,Z

would require that the variables X, Y, Z, be treated as double precision vari-
ables. If all the variables in an assignment statement are double precision
variables then the result will be computed in double precision arithmetic.
The DOUBLE PRECISION statement is one of a number of “type declara-
tion” statements. Other important examples of such statements include:
REAL, INTEGER, and COMPLEX.

6b. REAL and INTEGER Type Declarations. The REAL and INTEGER

statements are used to declare that a particular variable should be treated
as a real or as an integer variable. These statements are only necessary if
you wish to override the FORTRAN convention wherein integer variable
names begin with one of the letters I, J, K, L, M, N, and real variables
begin with any other letter.

6c. COMPLEX Type Declaration. The COMPLEX statement is used to
specify variables which are to be assigned both real and imaginary parts,
permitting FORTRAN to do complex arithmetic.

6d. Location of Type Declarations. Type declaration statements
of the kind we have been discussing must appear at the beginning of a
program, ahead of any DIMENSION statements in which the type-declared
variables appear.

7. Some Sample Problems

7a. Maximum of a One-variable Function . Let us assume that
we wish to determine the maximum value of some mathematical function
F of one variable x in some specific range: x1 < x < x2. The function
F (x) may be too complicated to find its maximum by setting its first
derivative equal to zero. There are, however, simple algorithms for finding
the maximum numerically. The simplest method, perhaps, is to calculate
the function at a series of closely spaced x-values and see where it is
largest. If greater accuracy is desired we can “zoom-in” on the region of
the maximum by printing out values of the function in a smaller range

16
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near the maximum number found so far. The following simple computer
program reads in limits X1, X2 specifying the domain over which the
function F (x) is to be calculated and then proceeds to calculate and
print out 10 values for F (x) for x-values equally spaced between X1 and
X2. For the sake of definiteness we have chosen a particular function.

F (x) = e−(x−
√

2)2

Its maximum is at x =
√
2.

C PROGRAM TO PRINT OUT THE VALUE OF A FUNCTION AT 10
C POINTS BETWEEN X1 AND X2.
C

READ(5,100)X1,X2
C
C DX IS THE STEP SIZE
C

DX=(X2−X1)/9.0
C
C LOOP OVER 10 X−VALUES
C

DO 10 J=1,10
AJ=J−1
X=X1+AJ∗DX
F=EXP(−(X−SQRT(2.))∗∗2)

10 WRITE(6,100)X,F
CALL EXIT

100 FORMAT(2F10.5)
END

If this program is run repeatedly, using successively more closely spaced
limits (X1, X2), we can zoom in on the maximum value of the function
F (x). Try it, starting with X1 = 1, X2 = 2. Start your second run using
the x-values for the two largest F -values of the previous run.

7b. Maximum of a Two-variable Function . Now consider a gen-
eral function of two variables F (x, y) defined over some domain x1 < x <

x2, y1 < y < y2. We can find its maximum numerically in the same man-
ner by calculating the function on a two-dimensional grid of x, y values
and seeing where it is greatest. The following program will calculate and
print out the value of the Function F (x, y) at a 10 × 10 array of points
equally spaced inside the domain x1 < x < x2, y1 < y < y2. For the sake
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of definiteness we have assumed the function.

F (x) = e−(x−
√

2)2−(y−
√

3)2

Its maximum is at x =
√
2, y =

√
3.

C PROGRAM TO PRINT OUT THE VALUE OF A FUNCTION AT A
C GRID OF 10x10 POINTS FOR WHICH X IS IN THE RANGE
C X1 TO X2 AND Y IS IN THE RANGE Y1 TO Y2.

DIMENSION F(10)
READ(5,100)X1,X2,Y1,Y2

C
C COMPUTE STEP SIZE FOR X AND Y
C

DX=(X2−X1)/9.0
DY=(Y2−Y1)/9.0

C
C LOOP OVER Y−VALUES
C

DO 20 J=1,10
AJ=J−1
Y=Y1+AJ∗DY

C
C LOOP OVER X−VALUES
C

DO 10 K=1,10
AK=K−1
X=X1+AK∗DX

10 F(K)=EXP(−(X−SQRT(2.)∗∗2−(Y−SQRT(3.)∗∗2)
20 WRITE(6,101)(F(K),K=1,10)

CALL EXIT
100 FORMAT(4F10.5)
101 FORMAT(1X,10F10.5)

END

In this program a one-dimensional array F (K) is used for printing since its
line of values is printed out for each value of the y-variable. An alternative
method would be to store the values for the function in a two dimensional
array, F (J,K), which would not have to be printed out until the entire
array was calculated. That alternative, however, would unnecessarily
increase the amount of memory required (100 locations vs. 10) without
having any particular advantage, and should, therefore, be avoided. As in
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the case of the one-variable function we can, in effect, “zoom in” on the
maximum of the function by running the program repeatedly using X1,
X2,Y1, Y2 values that bracket the maximum of the preceeding run. Try
it!
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A. Structured Fortran Specifications

1. In FORTRAN programs the main program is only a set of calls
to subroutines so that the main program can serve as a Table of
Contents. Each subroutine’s name suggests its function.

2. Variables are generally transferred into and out of a subroutine
through its argument list. Labeled COMMON is used grudgingly. Un-
labeled COMMON is never used.

3. In a subroutine’s argument list, all “input” variables are listed first.
These are followed by three spaces, “in & out” variables, three
spaces, “out” variables.

4. Each subroutine begins with COMMENT statements listing: (a) the
function of the subroutine; (b) the author; (c) the name of the latest
modifier and date of modification; and (d) a dictionary of variables
and constants.

5. There is a hierarchical diagram showing the flow of variables from
one subroutine to another. One subroutine may appear in several
different places on the diagram.

6. Generally, each subroutine’s list of FORTRAN statements is shorter
than one page; preferably much shorter.

7. There are no GOTO’s, except for error exits, for operator intervention,
or in rare strange circumstances.

8. Each successively nested loop is successively indented. Subroutine
calls are preferred over using more than one level of nesting.
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MODEL EXAM

1. Write the FORTRAN statements necessary to compute the elements
of an array C from the elements of two other arrays A and B that are
related to C by:

c1 = a11b1 + a12b2 + a13b3

c2 = a21b1 + a22b2 + a23b3

c3 = a31b1 + a32b2 + a33b3

Be sure to use: (a) DO loop(s); (b) DIMENSION statement(s); and
(c) variable-indices. Note: readers familiar with matrix notation will
recognize the multiplication of a three-dimensional vector B by a 3× 3
matrix A to produce another 3D vector C.

2. State the default and over-ride rules for these FORTRAN variable
types, including an example of each type of over-ride ataement: (a)
integer; (b) real; (c) complex; and (d) double precision.

3. Show how each of the data values given below would be printed under
control of the stated field specifications:

a. I3: -16337, -384, -21, 0, 21, 384, 16337

b. E9.4: -402.1, -9.4, -.02665, 0, .02665, 9.4, 402.1

Brief Answers:

Get some FORTRAN-knowledgable colleague to check your answers.
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