
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-346

REVIEW OF ELEMENTARY FORTRAN

G O T O

C
EXI

T

20 CONTINU
E

SUB
ROU

TIN
E

RE
AD

(1
01

)

CAL
L

IF
X
>
1 DO

20
I
=

101 FORMAT
RETURN

STOPFUNCTION

1

REVIEW OF ELEMENTARY FORTRAN

by

Robert Ehrlich
George Mason University

1. Introduction
a. Overview . 1
b. FORTRAN Programs . 1
c. FORTRAN Compilers . 1

2. Elements of a Fortran Statement
a. Constants: Integer or Real .2
b. Variables: Integer or Real . 3
c. Arithmetic Operations and Expressions 3
d. Mathematical Functions . 5

3. Arithmetic Assignment Statements
a. The Equal Sign in FORTRAN . 5
b. Integer and Real Arithmetic . 8

4. Input/Output Statements
a. READ Statements .9
b. WRITE Statements . 10

5. Branching Statements
a. Statement Numbers . 10
b. IF Statements . 11
c. GO TO Statements . 11

6. Other Fortran Statements
a. CONTINUE Statement . 12
b. COMMENT Statements . 12
c. CALL EXIT and END Statements . 12

7. Try These Programs
a. Program 1: Solution of Quadratic Equation 13
b. Program 2: Solution of Quadratic Equation 14
c. Program to Find the Height You Can Jump 14

Acknowledgments . 14

Appendix . 15

2

ID Sheet: MISN-0-346

Title: Review of Elementary Fortran

Author: R. Ehrlich, George Mason Univ., Physics Dept., Fairfax,VA

Version: 2/1/2000 Evaluation: Stage 0

Length: 1 hr; 28 pages

Input Skills:

1. Vocabulary: program, algorithm, operation, flowchart, source pro-
gram, machine language, floating point, compilation (MISN-0-
370).

2. Read and write simple flow diagrams (MISN-0-370).

3. Successfully submit a batch job or run an interactive program on
your computer (see your computer’s Operating Guide).

Output Skills (Knowledge):

K1. Vocabulary: constant, variable, expression, function, statement
numbers.

Output Skills (Rule Application):

R1. Recognize and write FORTRAN arithmetic expressions involving
real and integer constants and variables.

R2. Recognize and write FORTRAN input/output statements using
READ, WRITE, and simple FORMAT statements.

R3. Recognize and write FORTRAN branching statements using
GOTO and IF statements.

R4. Recognize and use the FORTRAN statements CALL EXIT, COM-
MENT, CONTINUE and END.

Output Skills (Project):

P1. Run a canned program to compute the roots of a quadratic equa-
tion, with and without checking the sign of the discriminant.

P2. Write, enter and run a program to compute the height to which
you can jump vertically in a gravitational field, using two sets of
input data for initial velocity and the gravitational acceleration.

External Resources (Required):

1. A computer with FORTRAN.

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4

MISN-0-346 1

REVIEW OF ELEMENTARY FORTRAN

by

Robert Ehrlich
George Mason University

1. Introduction

1a. Overview. This module is a review of some of the fundamentals
of FORTRAN IV. FORTRAN is one of the languages used in communi-
cation with the computer. It is a language that is well-suited to solving
many scientific and engineering problems. FORTRAN, which stands for
FORmula TRANslation, has gone through many modifications since its
introduction in the early 1950’s. We shall be exclusively concerned with
the “FORTRAN IV” (also known as FORTRAN 66) subset of the FOR-
TRAN version in present use, FORTRAN V (also known as FORTRAN
77). The basic elements of FORTRAN statements are: constants, vari-
ables, operations, expressions, and functions. We shall first discuss these
basic elements, and then see how they can be combined into FORTRAN
statements, and finally see how the statements can be combined into pro-
grams.

1b. FORTRAN Programs. A FORTRAN program consists of a se-
ries of statements, each of which is an instruction to the computer. There
are four general types of FORTRAN statements. One specifies the exe-
cution of various arithmetic or logical operations: these are usually the
heart of a program. Another type of statement calls for input of data or
output of results. Statements of these first two types are executed in the
order in which they appear in the program: this is an important point.
A third statement type can alter the sequence in which other statements
are executed. The fourth type of statement provides documentary infor-
mation about the procedure without specifying that any computation be
done.

1c. FORTRAN Compilers. The collection of FORTRAN statements
comprises a “source program.” These statements need to be translated
into a language that the computer can “understand”—machine language.
The process of the translation of source code into machine language is
known as “compilation.” Compilation is necessary because the computer
is only capable of carrying out very simple steps and each FORTRAN
statement may include a very large number of such steps.

5

MISN-0-346 2

2. Elements of a Fortran Statement

2a. Constants: Integer or Real. A constant in a FORTRAN state-
ment appears as a value, a specific number: this is in contrast to a variable,
which has a name and may take on a range of values. There are two kinds
of constants that are commonly used in FORTRAN: “integer” constants
and “real” constants.

An integer constant may be any whole number (positive, negative
or zero), and it may be restricted to some maximum number of decimal
digits that depends on the computer. On some computers the largest
allowed integer is 216 − 1 = 32, 767.

Real numbers are represented inside the computer in floating point
form which consists of a mantissa and an exponent. This is similar to
scientific (“power of ten”) notation. Due to computer storage limitations
there are limits on both the number of digits of precision in the mantissa
(often eight), as well as the maximum range of exponents (often between
10−40 and 10+40). Greater ranges in the number of digits are possible on
most computers, using double precision, but we will postpone consider-
ation of this.1 An integer constant is distinguished from a real constant
by the absence of a decimal point. The following are acceptable integer
constants since they do not contain decimal points:

0 −5678 1000 +3

Real constants may be written with or without a power of ten. The power
of ten is designated by the letter E followed by a positive or negative
exponent. These are acceptable real constants:

15.123 2.0 −3.14

−.000352 3.000 0.1

−0.1E7 5.0E−12 −0.7E−22

The following real constants would be unacceptable in most versions of
FORTRAN:

12,562.3 (commas not allowed)

1See “Advanced Features of FORTRAN” (MISN-0-347).

6

MISN-0-346 3

+592 (decimal point missing)

1.2E+83 (exponent too large)

5.2E7.3 (only integral exponents allowed)

E−7 (exponent alone not allowed)

1E−3 (decimal point missing)

2b. Variables: Integer or Real. A variable refers to any quantity
used in FORTRAN that is referred to by name rather than as a specific
number. Variables may take on many values during the execution of
a program, while constants are restricted to one value. Like constants,
variables may be either integer or real. The distinction between real
and integer variable is an important one, given the difference in the way
arithmetic operations are carried out for the two types of variables or
constants.

An integer variable may only take on integral values. The name of
an integer variable has one to six letters or digits, the first of which must
be either I, J, K, L, M, or N. Acceptable integer variable names include:
J, KLM, L234, MATRIX.

Real variables are represented in the same manner as real constants,
namely in scientific notation. The name of a real variable has one to six
letters or digits, the first of which is a letter other than I, J, K, L, M,
or N. Acceptable real variable names include: X, VAR, F001, VECTOR.
The choice of variable names is completely up to the programmer. You
should usually choose names that remind you of the variables’ meanings.

2c. Arithmetic Operations and Expressions. There are five basic
arithmetic operations in FORTRAN, each of which is designated by the
symbol shown below:

addition +
subtraction −
multiplication ∗
division /
exponentiation ∗∗

A “FORTRAN expression” is a rule for computing a numerical value. It
may consist of one or more variables and constants, perhaps combined

7

MISN-0-346 4

with suitable arithmetic operations. Examples of valid expressions in-
clude:

Expression Meaning
K The value of the integer K
X∗Y The value of the product of X and Y

(A+B)/(C∗∗2) The value of the sum of A and B
divided by the square of C

PI/2.0 The value of the variable PI divided by 2.0

As indicated in the third example, parentheses may sometimes be used to
convey the order of operations. In the absence of parentheses there is an
assumed hierarchy of operations: all exponentiations are performed first,
then all multiplications and divisions and then all additions and subtrac-
tions. Within a given class (e.g. multiplication and division) the order is
from left to right in the expression. Thus, the meaning of (A+B)/C∗∗2
would not differ from the third example, but the meaning of A+B/C∗∗2
would differ from it. In the latter case, the value of A is to be added to the
value resulting from B divided by the square of C. There are many rules
which valid expressions must obey. These rules are illustrated in Table
1 which shows examples of correct and incorrect FORTRAN expressions.
Here are some more rules:

1. Do not use two operation symbols next to each other, such as:
A∗−B. (In this context, note that the ∗∗ representing exponenti-
ation is considered one symbol.)

2. Do not use ambiguous expressions such as A∗∗B∗∗C, which could
mean either A∗∗(B∗∗C) or (A∗∗B)∗∗C.

3. Do not mix real and integer quantities in the same expression, except
when raising a real quantity to an integral power.

4. Do not use parentheses alone to convey multiplication. For example
(A+B)∗(C+D) is valid but (A+B)(C+D) is not.

8

MISN-0-346 5

Table 1: Some Correct and Incorrect FORTRAN Expressions.

Mathematical Correct Incorrect
Notation Expression Expression
a · b A∗B AB
a+ 2 A + 2.0 A+2
a · b

c · d
A∗B/(C∗D) A∗B/C∗D

((a+ b)/c)
2.5

((A+B)/C)∗∗2.5 A+B/C∗∗2.5
a/[1 + b/(1.5 + c)] A/(1.0+B/(1.5+C)) A/(1.0+B/1.5+C)
a · (−b) A∗(−B) A∗−B

2d. Mathematical Functions. The FORTRAN language provides
for the use of a number of common mathematical functions: some of these
are listed in Table 2. To use a function in an expression you need only
write the pre-assigned name given in Table 2 and enclose the argument
in parentheses. For example, if we wish to compute the sine of an angle
X we need only write SIN(X). The argument of a function need not be a
single variable or constant: if we wish to find the square root of b2 − 4ac,
we can write SQRT(B∗∗2−4.0∗A∗C).

Table 2: Some Of The Mathematical Functions In FORTRAN.

Function FORTRAN name
exponential EXP
natural logarithm (base e) ALOG
common logarithm (base 10) ALOG10
sine of an angle in radians SIN
cosine of an angle in radians COS
hyperbolic tangent TANH
square root SQRT
arctangent ATAN
absolute value ABS

3. Arithmetic Assignment Statements

3a. The Equal Sign in FORTRAN. Any FORTRAN statement
containing an equal sign is known as an assignment statement. The gen-
eral form of the assignment statement is:

variable = expression,

9

MISN-0-346 6

where “expression” stands for any mathematical expression involving vari-
ables, constants and mathematical functions. Thus the following are valid
assignment statements:

X = 1.0

C = A + B

Z = (A + 1.0)∗∗2 + C∗X

The left hand side must be a variable so these are invalid FORTRAN
statements:

1.0 = X

A + B = C

(A + 1.0)∗∗2 + C∗X = Z

The reason that a single variable must be all that appears to the left of the
equal sign becomes clear when one realizes that the assignment statement
is an instruction to the computer to:

1. find a numerical value for the entire expression to the right of the
equal sign, and then to

2. store that value in the memory location reserved for the variable
that appears to the left of the equal sign.

Each variable appearing in a FORTRAN program is associated with
a different location in the computer memory. For example, the statement

C = A + B

is an instruction to add together the numerical values stored in the mem-
ory locations reserved for variables A and B, and then store the result in
the memory location reserved for the variable C. For the statement to be
meaningful, it must come after other statements that instruct the com-
puter to store actual numerical values in the memory locations reserved
for variables A and B. This might occur in several previous assignment
statements. For example:

A = 2.0

B = A + 1.0

C = A + B

10

MISN-0-346 7

After these three statements are executed, the memory locations corre-
sponding to the variables A, B, and C contain the numerical values 2.0,
3.0, 5.0, respectively. Check these numbers!

If a variable appears to the left of an equal sign in more than one
assignment statement, its value is modified as each relevant statement is
executed. For example, after the computer executes the two statements

X = 1.0

X = X + 1.0

X has the value 2.0. Note that the statement X = X + 1.0 is a perfectly
valid assignment statement: it means: “Add 1.0 to the present value
of X and call that the new value of X.” The use of the equal sign in
FORTRAN is quite different from its use in mathematics since, as an
equation, x = x + 1 is meaningless. The real meaning of the assignment
statement might have been better conveyed if the symbol “←” were used
in a place of the equal sign:

X ← X + 1.0

In any case, even if it is not always the most appropriate symbol, the
equal sign is an established part of the FORTRAN language.2

The order in which a series of FORTRAN statements appears can
be important, since the statements are normally executed in the order
in which they appear in the program. As an illustration, suppose the
following three statements appear in a program:

X = 1.0

X = X + 2.0

X = 2.0∗X

After the computer executes these statements, X has the value 6.0. Now
suppose the second and third statements are interchanged:

X = 1.0

X = 2.0∗X

X = X + 2.0

2This peculiar use of the equal sign for both equality and assignment is also part
of the BASIC language. However, the corresponding assignments in PASCAL and
MUSIMP would be, respectively, X: = X + 1 and X : X + 1.

11

MISN-0-346 8

After the computer executes these statements, X has the value 4.0.

3b. Integer and Real Arithmetic. The distinction between integer
and real quantities is important because arithmetic computer operations
are carried out differently in the two cases.

In the case of integers, each arithmetic operation yields a result which
is truncated to the nearest lower integer. This is known as integer arith-
metic or fixed point arithmetic. For example, the result of the division
7/2 would be 3 according to the rules of integer arithmetic. The loss of
precision that occurs when integer arithmetic is used can sometimes be
used advantageously.3

In the case of reals, arithmetic operations are performed in the usual
way according to real “floating point” arithmetic. Although the result of
the division 7/2 would be 3 according to the rules of integer arithmetic,
the result of 7.0/2.0 would be 3.5 according to the rules of real arithmetic.

All the variables and constants which appear in an assignment state-
ment to the right of the equal sign must be of the same type, either all
real or all integer. The four possibilities consistent with this rule are:

case variable to left expression to right
of “equals” sign of “equals” sign
1. real real
2. integer integer
3. real integer
4. integer real

Here is an example of each case:

1. real = real: C = 5.0∗A/B
If this statement appears in a program after A and B have been
assigned values of 2.0 and 3.0, respectively, then the execution of
this statement causes C to be assigned a value 3.3333333. (The
exact number of significant digits depends on the word size of the
particular computer).

2. integer = integer: K = 2∗(L/2)/3
If L has been previously assigned a value of 5, then the execution of
this statement causes K to be assigned a value of 1 (obtained by the

3By contrast with FORTRAN, integer arithmetic is more accurate in MUSIMP,
where up to 600 digits may be kept in an integer.

12

MISN-0-346 9

following sequence of integer arithmetic operations: 5/2 = 2, 2× 2
= 4, 4/3 = 1).

3. real = integer: X = 5∗K/2 + 1
If K has been previously assigned a value of 1, then the execution
of this statement causes X to be assigned a value of 3.0. Note that
the expression is first evaluated according to integer arithmetic and
then it is converted to a floating point (real) number.

4. integer = real: K = 0.5∗A∗∗2
If A has been previously assigned a value of 3.0, then the execution
of this statement causes K to be assigned a value of 4. Note that the
expression is first evaluated according to floating point arithmetic
and then the result is truncated to the next lower integer. This
example illustrates the one exception to the rule that all variables
and constants appearing to the right of an equal sign must be of
same type: the exception is that integral exponents are written
without a decimal point.

4. Input/Output Statements

4a. READ Statements. The computer is instructed to input infor-
mation using a READ statement. Information may be accepted from a
variety of input devices connected to the computer, including a keyboard,
magnetic tape, or disk. A READ statement needs to specify:

1. the quantities to be read into the computer,

2. the input device to be used to read the data: magnetic tape unit,
keyboard, etc.,

3. the detailed format of the data as it appears on the input medium.

As an example of a complete READ statement, we have:

READ(2,100)Q1,Q2

The 2 appearing in parentheses indicates that the values to be read for
the variables Q1 and Q2 are to be read from device number 2. (The as-
signment of particular numbers to each device is computer-dependent).
The second number in the parentheses after the comma (100) is the state-
ment number of another statement in the program, a so-called FORMAT
statement, which specifies the detailed format of the data which is to be

13

MISN-0-346 10

read. A FORMAT statement in the same program as the previous READ
statement might be:

100 FORMAT(2F10.5)

The 2F10.5 appearing in parentheses provides this information:

2: There are two quantities to be read.
F: They are both reals, numbers with decimal points.
10: Each number takes up ten spaces, including blanks,

decimal point, and sign.
.5: Each number has five digits after the decimal point.

This code is discussed in more detail in “Advanced Features of FOR-
TRAN” (MISN-0-347). Unlike most other kinds of statements, it does
not matter where in the program a FORMAT statement is placed. This
is because the FORMAT statement is not actually an instruction to the
computer to do anything but rather a statement that is used as a refer-
ence by some READ or WRITE statement(s) in the program. A good
practice is to put all FORMAT statements in one part of the program for
handy reference e.g., just before the end.

4b. WRITE Statements. To instruct the computer to output certain
quantities we use a WRITE statement. The correct form of the WRITE
statement is very similar to the READ statement. For example,

WRITE(3,101)Q1,Q2

is an instruction to write out values for Q1 and Q2 on device number 3
according to the format specified by FORMAT statement number 101.
Note that the same FORMAT statement could be referred to by more
than one READ or WRITE statement if the format of the quantities
being read or written is the same.

5. Branching Statements

5a. Statement Numbers. We have already seen the use of statement
numbers in connection with FORMAT statements. Whether a statement
has an identifying number is usually optional in FORTRAN. The most
common reason for giving a statement a number is to be able to refer
to that statement elsewhere in the program. This occurs particularly in
connection with format statements and statements that alter the normal
sequential flow of a program.

14

MISN-0-346 11

5b. IF Statements. The IF statement is the FORTRAN version of a
two- or three-way branch. The general form of the IF statement is

IF (expression) N1,N2,N3

where “expression” stands for any FORTRAN expression, and N1, N2,
and N3 are the statement numbers of three other statements in the pro-
gram. The IF statement is an instruction to the computer to

1. find a numerical value for the expression in parentheses, and then

2. go to the statement numbered either N1, N2, or N3 for the next
instruction, depending on whether the numerical value of the ex-
pression is negative, zero, or positive, respectively.

The IF statement thus permits a three-way branch. If only a two-way
branch is desired, two of the three statement numbers N1, N2, and N3
must be set equal. For example, a two-way branch is provided by the
statement

IF (Q1)30,20,30

which instructs the computer to branch to statement 30 for its next in-
struction if the value of Q1 is either negative or positive, and to branch
to statement 20 it it is zero.

The type of ! statement that we have discussed is known as the
arithmetic IF statement. Another useful type of statement is the “logical
IF” statement, which we shall not discuss because it cannot be used in
all versions of the FORTRAN IV language.

5c. GO TO Statements. The GO TO statement is the FORTRAN
version of an unconditional branch:

GO TO N

where N is the statement number of another statement in the program.
The GO TO statement is an instruction, or command, to unconditionally
branch to the statement numbered N. Another form of the GO TO
statement is the computed GO TO which has the general form:

GO TO (N1,N2,...,Nm),i

In this statement N1 , ..., Nm are numbers of other statements in the
program, and i is the name of a variable. This GO TO statement in-
structs the computer to go to statement number N1 if the variable i has

15

MISN-0-346 12

the value 1, to statement number N2 if i has the value 2, and so forth.
Here is an example:

GO TO (10,20,30),IJK

The variable IJK would have been defined in a prior statement. If its
value were 1, 2, or 3, the statement would instruct the computer to go to
statement 10, 20, or 30, respectively, for its next instruction. A value of
IJK other than 1, 2, or 3 would cause the computer to simply execute the
next statement in sequence.4

6. Other Fortran Statements

6a. CONTINUE Statement. The CONTINUE statement, as the
name implies, means “proceed to the next instruction,” and is a dummy
statement. Its only purpose is to provide a numbered statement to branch
to, from some other part of the program.

6b. COMMENT Statements. A COMMENT statement, unlike all
other types of statements, is not an instruction to the computer. Its only
purpose in a program is to explain something to anyone who reads the
FORTRAN program. Even if no one else will be looking at your program,
it is still necessary to use many COMMENT statements so that when
you yourself look at the program later you can more easily remember the
program’s purpose and content. A COMMENT statement is designated
by the letter “C” in the first position on a typed line. The remainder of
the line may contain any comment as indicated in this example:

C col . 1

C ADD A AND B, AND STORE THE RESULT IN X.

C X = A + B

6c. CALL EXIT and END Statements. The statement
CALL EXIT is an instruction to the computer to stop the program since
there is nothing else that needs to be done. On some computers the state-
ment used for this purpose is STOP. A STOP or CALL EXIT could be
located anywhere in the program. The END statement has a different
purpose; it tells the computer that there are no more statements in the
program. The END statement must, therefore, always be physically the
last statement in the program.

4In “structured programming” the use of GO TO statements is strongly discour-
aged (“deprecated”). See the Appendix and MISN-0-347.

16

MISN-0-346 13

7. Try These Programs

7a. Program 1: Solution of Quadratic Equation. Here is an
example of a program that makes use of all the kinds of statements we
have described so far:

C THIS PROGRAM FINDS THE TWO ROOTS OF A QUADRATIC
C EQUATION
C

READ(5,100)A,B,C
DISCR=B∗∗2−4.0∗A∗C
IF(DISCR)10,20,20

10 CALL EXIT
20 CONTINUE

ROOT1=(−B+SQRT(DISCR))/2.∗A
ROOT2=(−B−SQRT(DISCR))/2.∗A
WRITE(6,101)ROOT1,ROOT2
GO TO 10

100 FORMAT(3F10.5)
101 FORMAT(2F10.5)

END

This program computes the two roots of a quadratic equation. This
program tells the computer to:

1. Input values for the three variables A, B, and C from device number
5 according to a format specified in statement number 100.

2. Compute ROOT1 and ROOT2 which are the two roots of a
quadratic equation having A, B, and C as its coefficients.

3. Output numerical values for the two roots onto output device num-
ber 6 according to a format specified in statement number 101.

4. Stop since there is nothing else to be done.

The discriminant, (b2 − 4ac), is computed prior to finding the roots. If
the IF statement finds that the value of the discriminant, DISCR, is neg-
ative, the program instructs the computer to branch to statement 10 and
quit. For non-negative values of the discriminant the program branches
to statement 20 and then continues. The use of the CONTINUE state-
ment was somewhat arbitrary in this example. It would have also been
possible to omit the CONTINUE and make the statement immediately

17

MISN-0-346 14

following it number 20. Note that the program will only produce output
if the discriminant is non-negative. Without the “IF statement test” for
a non-negative discriminant, the computer might (depending on the in-
put values for A, B, and C, have been asked to take the square root of a
negative number. Under ordinary circumstances this would not yield an
imaginary result, but would instead be interpreted as an error, and would
possibly cause the computer to terminate the program instantly, even if
there is more computation to be done.

Enter the program and run it using three sets of quadratic coef-
ficients, one of which would yield a negative discriminant. Check the
computer through doing the calculation by hand.

7b. Program 2: Solution of Quadratic Equation. This program is
almost the same as the previous one except that there is no IF statement
which checks that the discriminant is non-negative.

READ(5,100)A,B,C
DISCR=B∗∗2−4.0∗A∗C
ROOT1=(−B+SQRT(B∗∗2−4.0∗A∗C))/(2.∗A)
ROOT2=(−B−SQRT(B∗∗2−4.0∗A∗C))/(2.∗A)
WRITE(6,101)ROOT1,ROOT2
CALL EXIT

100 FORMAT(3F10.5)
101 FORMAT(2F10.5)

END

Run the program using A, B, C coefficients which would result in a
negative discriminant and report what the computer does when asked to
take the square root of a negative number.

7c. Program to Find the Height You Can Jump. The formula
that produces the height you can jump is y = v2/2g, where v is your
vertical take-off velocity and g is the acceleration due to gravity. Write
a program that reads in values for v and g, computes y and prints the
result. Run the program using v = 10 ft/sec and use two different values
of g: 32 ft/s2, the acceleration on earth, and 5 ft/s2, the acceleration on
the moon.

Acknowledgments

Preparation of this module was supported in part by the U. S. Coast
Guard Academy for a Directed Studies program. It was also supported in

18

MISN-0-346 15

part by the National Science Foundation, Division of Science Education
Development and Research, through Grant #SED 74-20088 to Michigan
State University.

Appendix

- Typing FORTRAN Statements -

The individual statements in a FORTRAN program are typed on
separate lines. There are certain rules that must be obeyed concerning
the format of the statements:

1. For numbered FORTRAN statements, the statement number must
be typed in positions 1-5 on a line.

2. The FORTRAN statement itself must be between columns 7 and
72 (inclusive). If a statement does not fit on a single line, it may
be continued on additional lines which have numbers in column 6
to indicate that they are continuations.

3. All statements must be typed exactly as they appear in the program,
including every decimal point and comma. One exception is that
extra blank spaces can (almost) always be added to a statement to
improve its appearance if this is desired. For example, it is permitted
to write X = 1.0 in place of X=1.0 since blanks are ignored in
FORTRAN, except when embedded in phrases contained in quotes.

4. The numbers on data lines must have a format that is consistent
with that specified in the FORMAT statement which will be used
to read in the data. As an illustration, consider the data lines
to be read by the program in Sect. 4h. According to the READ
statement, each data line should contain numerical values for the
variables A, B, and C. The format of the data should be consistent
with the statement

100 FORMAT(3F10.5)

which specifies:

a. There are three numbers with decimal points on a line.

b. Each number is contained within a ten column “field” on the
line. (The first number must be within columns 1-10, and the
second within columns 11-20).

19

MISN-0-346 16

c. There are five digits after each decimal point.

The last rule, concerning the placement of the decimal point, is ac-
tually necessary only if the decimal point is not explicitly stated on the
line. If the decimal point is typed explicitly then it may appear anywhere
within the field without regard to what is specified in the FORMAT
statement. It is always a good idea to include an explicit decimal point
in numbers that are read in “F” format, as this eliminates the possibility
of the decimal point being inserted improperly by the computer.

20

MISN-0-346 LG-1

LOCAL GUIDE

See this module’s Model Exam, which shows that you must bring the
original of your annotated computer output, not a copy, to the Exam
Room when you come to take your exam.

21

MISN-0-346 PS-1

PROBLEM SUPPLEMENT

1. Identify which of the following numbers are unacceptable as real FOR-
TRAN constants:

356 3.56 − 53, 000 1011 .0000562 − 10−13

2. Identify which of the following numbers are unacceptable as integer
constants:

+324 − 562. 53, 000 2|E| + 20000000000

3. Identify which of the following names are unacceptable for integer vari-
ables, which are unacceptable for real variables, and which are unac-
ceptable for any variable:

H, ALPHA, ALPHA 123, I, KLM, KM−12, ATO6SH, 12AH6,
CDC162, KAPPA, EPSILON, B1.1, A∗B, XSQUARED, XCUBED!

4. Write FORTRAN expressions corresponding to the following mathe-
matical expressions:

x+ y3 a+
b

c
(

a+ b

c+ d

)2

+ x2 1 + x+
x2

2!
+
x3

3!

5. State the value of A or I stored as a result of the following arithmetic
assignment statements, and indicate whether the result is integer or
real: A = 2∗6 + 1

A = 2∗6 + 1

A = 2∗6 + 1

A = 2∗6 + 1

A = 2∗6 + 1

22

MISN-0-346 PS-2

6. Write arithmetic assignment statements to:

a. Add the current value of a variable named ALPHA to the current
value of a variable named DELTA and make the sum the new value
of a variable named BETA.

b. Subtract the value of a variable named A from the value of a variable
named B, take the square root of the difference and assign it as the
new value of W.

7. Write FORTRAN statements to compute values for these formulas:

g =
1

2
log

(

1 + sinx

1− sinx

)

D = log | secx+ tanx|

Y = (2π)1/2xx+1 + e−x

Brief Answers:

Have a FORTRAN-wise friend check your answers.

23

MISN-0-346 ME-1

MODEL EXAM

1. See Output Skill K1 on this module’s ID Sheet.

2. Identify which of the following numbers are unacceptable as real FOR-
TRAN constants:

56.004 .039E05 .00200041 -33,564 -1.E-23

3. Identify which of the following numbers are unacceptable as integer
FORTRAN constants:

-7729. -7729 7729. 7729 .000007729

4. Identify which of the following names are unacceptable for integer
variables, which are unacceptable for real variables, and which are
unacceptable for any variable:

XXX X2223A IJKLX K K22 SQUAREROOT

SQUARE4 16SQ N1 N1.378 (A/B)*C

5. Write FORTRAN expressions corresponding to the following mathe-
matical expressions:

a5 + y3 x+
y

z

x2 +

(

a ∗ b

c+ d

)4
[

(1 + x)3 + (1 + x)4
]5/3

6. State the value of A or I stored as a result of the following arithmetic
assignment statements, and indicate whether the result is integer or
real:

A = 2*6 + 1

I = 2*(10/4)

A = 1./3. + 1./3. + 1./3.

I = 1./3. + 1./3. + 1./3.

A = (4.0)**(3./2.)

7. Write arithmetic assignment statements to:

24

MISN-0-346 ME-2

a. Multiply the current value of a variable named ALPHA by the
current value of a variable named DELTA and make the product
the new value of a variable named BETA.

b. Divide the value of a variable named A by the value of a variable
named B, take the square root of the quotient and assign that as
the new value of W.

8. Write FORTRAN statements to compute values for these formulas:

A = A0 sin(ωt+ δ)

φ = tan−1 |(h2 − b2)1/2/b|

Y = (4π)−1/2e−λx

9. Attach, as part of these Exam Answer Sheets, your hand-annotated
output (not a copy) for solution of the quadratic equation. Leave
space on the Answer Sheet for the grader to mark this item, Item 9.
Be sure that the output shows:

a. three cases, one of which yields a negative discriminant;

b. a check of the program against calculator values;

c. the resonse of the square root library program when it is asked to
take the square root of a negative number.

10. Attach, as part of these Exam Answer Sheets, your hand-annotated
output (not a copy) for producing the height you can jump. Leave
space on the Answer Sheet for the grader to mark this item, Item 10.
Be sure that the output shows:

a. the program that you created;

b. two runs of the program, one using a = 32 ft/s2 and one using
a = 5 ft/s2, and with both using initial v = 10 ft/s.

Brief Answers:

Have a FORTRAN-wise friend check your answers to questions 2-8.

25 26

27 28

