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THE BOHR-SOMMERFELD

MODEL OF THE ATOM

by

Paul M.Parker

1. Overview

In this module Bohr’s model as applied to the most common one-
electron system, the hydrogen atom, is described first. The model is ex-
tended to other one-electron systems (the hydrogen-like ions) and chemi-
cal and spectroscopic evidence in support of the model is introduced. Fi-
nally, the limitations and deficiencies of the model are discussed.

2. Basic Features

2a. Introduction. The Danish physicist Niels Bohr proposed the first
modern model of atomic structure in 1913. It applied only to the simplest
atomic systems, namely, those consisting of an atomic nucleus plus a
single orbiting electron. Although Bohr’s model is now considered naive
and outdated, some of its important features have survived unchanged,
while others have persisted at least in a modified or qualitative manner.
The model is, therefore, an excellent entry point to the study of atomic
structure and spectroscopy.

2b. Electrons Move in Circular Orbits. Guided by earlier work
by the nuclear physicist Ernest Rutherford, Bohr visualized the hydrogen

ELECTRON

charge -e

NUCLEUS

charge +e

r Fc

v

Figure 1. Uniform circular mo-
tion of electron about the nucleus.
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atom as consisting of a massive, compact and positively charged nucleus
and a negatively charged, point-like electron of mass m moving with con-
stant speed v in a circular orbit around the nucleus (see Fig. 1). The

centripetal force ~F required to keep the electron in a circular orbit is the
electric force of attraction between the positive nucleus and the negative
electron and by Coulomb’s law has the magnitude Fc = ke2/r2 where
k = 8.988× 109Nm2/C2. This force should satisfy Newton’s law:

~Fc = m~a , (1)

where a = v2/r is the electron’s centripetal acceleration, thus:

ke2

r2
= m

v2

r
. (2)

2c. Angular Momentum is Quantized. Additionally, Bohr made
the radical and drastic assumption that the magnitude of the angular
momentum of the electron, L = mvr, is not only constant, as it would be
in Newtonian mechanics, but also quantized, that is, restricted to selected,
“allowed” values governed by the positive integers and Planck’s constant
h = 6.626× 10−34 J s, as follows:

L = mvr = nh̄; n = 1, 2, 3, 4, . . . , (3)

where h̄ (pronounced “h-bar”) denotes h/2π. At the time, the only jus-
tification for Eq. (3) was that it made the model work. We now know
that the quantization of angular momentum is a direct consequence of
the electron’s wave nature which was not discovered until more than a
decade after Bohr’s work. According to the wave model of the atom,
Eq. (3) is incorrect. The quantity “n,” now called the “principal quantum
number,” still has the same set of values although it arises in a totally
different manner.1

3. Consequences of Quantized L

3a. “Allowed” Orbital Radii. We may eliminate v from Eq. (2) and
Eq. (3) and solve the resulting expression for r:

rn =
n2h̄2

kme2
, (4)

1See “The Schrödinger Equation in One Dimension: Quantization of Energy”
(MISN-0-242).
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where r has been subscripted to emphasize that it depends on n and is
therefore quantized; that is, only selected values of r are allowed. The
smallest allowed orbit radius is obtained by taking n = 1,

r1 =
h̄2

kme2
. (5)

By supplying the known numerical values of the fundamental constants
h, k, m and e, the radius of the smallest allowed Bohr orbit (called the
“Bohr radius”) can be calculated:

r1 = 5.29× 10
−11m = 0.529 Å = 0.0529 nm , (6)

and the nth radius is
rn = n2r1 . (7)

3b. “Allowed” Orbital Speeds. When we substitute the expression
for rn back into Eq. (3) and solve the resulting equation for the allowed
values of v, we obtain

vn = v1/n , (8)

where v1 is the speed of the electron in the first Bohr orbit,

v1 =
ke2

h̄
= 2.19× 106m/s ≈

c

137
, (9)

and c is the speed of light in vacuum.

3c. “Allowed” Electron Energies. The total energy E of the elec-
tron in one of its allowed orbits is the sum of its kinetic energy Ek = mv2/2
and its potential energy Ep = −ke

2/r in the electric field of the nucleus,
with the conventional choice of r = ∞ corresponding to zero electric
potential energy. Since the electrical force on the electron is attractive,
moving the electron from r = ∞ to some finite distance r from the nu-
cleus lowers its potential energy below zero, that is, to negative values.
The total energy is

E =
1

2
mv2 −

ke2

r
. (10)

Using Eq. (2) we replace (mv2/2) by (ke2/2r), producing

E = −
ke2

2r
. (11)
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Introducing into this expression the allowed values of r from Eq. (4) gives
the corresponding allowed energies,

En = −
1

n2

(

k2me4

2h̄2

)

= −
R

n2
, (12)

where R is called the “Rydberg constant,”

R =
k2me4

2h̄2
. (13)

Given the known numerical values of k, m, e and h, the Rydberg constant
is calculated to be

R = 2.18× 10−18 J = 13.6 eV . (14)

Table 1. The allowed en-
ergies of the electron in
atomic hydrogen.

n Energy
1 E1 = − 13.6 eV
2 E2 = − 3.40 eV
3 E3 = − 1.51 eV
4 E4 = − 0.850 eV
.
.
.
∞ E∞ = 0

The allowed electron energies can be calculated from Eq. (12) as shown
in Table 1 and marked off on a vertical energy axis to give the “energy
level diagram” shown in Fig. 2. Since physical systems generally tend
toward the lowest possible energy state, an isolated hydrogen atom will
normally be found in the lowest allowed energy state (n = 1) which is
called the “ground state.” The Bohr model predicts that additionally the
atom can exist in an infinite number of “excited states” with quantized
energies En = −R/n2, 1 < n < ∞. In the limit as n → ∞, both
Ek and Ep become zero and this is taken to mean that the electron is
no longer bound to the nucleus, i.e. the system has become “ionized.”
The minimum energy required to ionize the hydrogen atom is called the
“ionization energy” and is 13.6 eV since this is the energy which must
be supplied in some form to raise the atom from the ground state where

8



MISN-0-309 5

n = ¥0.00 ionization level

first excited state

ground state

HYDROGEN

n = 3-1.51

n = 2-3.40

n = 1-13.6

n = 4-0.85

Figure 2. Energy
level diagram of the
allowed energies of
the electron in atomic
hydrogen.

it normally resides to the “ionization level.” If more than this energy is
supplied, the excess will reside with the liberated electron and the residual
nucleus as kinetic energy.

4. Bohr Model for Other Systems

4a. Overview. The Bohr model can be applied to two-particle atomic
systems other than atomic hydrogen. For example, it can be applied to
any hydrogen-like ion that consists of a single electron orbiting a nucleus
containing more than one proton. Such a system is obtained by ionizing
(removing) all but one electron from an initially neutral atom. Other
two-particle systems can be composed of exotic particles such as pions,
muons, positrons, etc., instead of the usual electrons and protons. The
limitations of the Bohr model are more apparent in some of these systems
than in others.

4b. Hydrogen-like Ions. In order to rework the Bohr model for all
hydrogen-like ions, the only modification to be taken into account is that
whereas the nuclear charge for hydrogen was +e, for the hydrogen-like
ion of element Z it is (+Ze). Coulomb’s law, which for hydrogen was
written as Fc = ke2/r2 then becomes Fe = kZe2/r2. Comparing the two
expressions for Fc, it is seen that the hydrogen results can be adapted
to the ions by simply replacing (e2) with (Ze2) wherever it occurs. This
quick fix gives:

rn = n2r1/Z, vn = Zv1/n, En = −Z
2R/n2 , (15)

9
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n = ¥0.00

LITHIUM ( Li )3
++

n = 3-13.6

n = 2-30.6

n = 1-122

n = 4-7.65

Figure 3. Energy level diagram for
the hydrogen-like ion 3Li

2+.

where, as before, r1 = 0.529 Å, v1 ≈ c/137 and R = 13.6 eV. Taking
Z = 1 in Eq. (15) reduces the expressions back to those for hydrogen.
Because of the increased nuclear charge of the ion, the electron becomes
more tightly bound than in hydrogen. The energies, therefore, become
more negative, i.e., go deeper and become further removed from the ion-
ization level, by a factor of Z2. This is illustrated for 3Li

++ in Fig. 3.
As Z increases, the radii become smaller by the factor Z, and the speeds
increase by the same factor, leaving the angular momenta unchanged as
required by Eq. (3). These general trends are of considerable interest as
one proceeds from element to element through the periodic table.2

4c. Exotic Atomic Systems. If an atomic system is constructed of
exotic particles such as mesons, muons, positrons, etc., the energy and the
orbital radius are scaled by the mass of the new system. For example, if we
replace the electron in a hydrogen atom with a muon of mass 10.6MeV/c2

and charge −e, the only change to the energy expression, Eq. (12), is to
replace the mass of the electron with the mass of the muon. The result
is:

En = −
1

n2

(

k2mµe
4

2h̄2

)

= −
1

n2

(mµ

m

)

(

k2me4

2h̄2

)

.

2See “The Pauli Principle and the Periodic Table of the Elements” (MISN-0-318).
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Thus the energy levels are scaled up by a dimensionless factor equal to
the ratio of the muon mass to the electron mass, i.e.,

(mµ

m

)

=

(

106MeV/c2

0.511MeV/c2

)

.

The Bohr radii of such a “µ-mesic atom” would similarly be scaled down
by a factor of 207.

5. Supporting Experimental Evidence

5a. The Size of the Atom. Our first evidence supporting the Bohr
picture is from the sizes of atoms. From the measured mass densities of
solids and liquids, and with a knowledge of Avogadro’s number, it is easy
to infer that the radii of atoms are of the order of one angstrom. The
radius of the first Bohr orbit of hydrogen is 0.529 Å, so it is in the right
ballpark.

5b. Hydrogen’s Ionization Energy. Next, the ionization energy
of atomic hydrogen, according to the Bohr model, is 13.6 eV per atom.
The molar ionization energy can be obtained from it by multiplication
with Avogadro’s number. After conversion to the caloric energy scale,
the result is 22.4 kcal/mole which agrees with the value obtained through
chemical heat of reaction measurements. The Bohr model gives this cor-
rect result solely as the specified combination of fundamental constants
of nature. The odds against this being merely a “lucky coincidence” are
overwhelming.

5c. Optical Spectra of Hydrogen. The most convincing and accu-
rate evidence for the validity of the energy formula Eq. (12) comes from
the optical spectra of hydrogen and the hydrogen-like ions. The observed
frequencies of the spectra of hydrogen and the hydrogen-like ions agrees
with the calculated values to four significant digits in all known cases.
This is explored in detail elsewhere.3

6. Refinements of the Model

Three refinements of the Bohr model were worked out by Arnold
Sommerfeld and are jointly responsible for giving rise to small deviations
in the allowed energies from the values En = −Z2R/n2. These refine-
ments brought the calculated frequencies into even better agreement with

3See “Energy Levels and Spectra of Atomic One-Electron Systems” (MISN-0-215).
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observation (from four to five significant digits). The refinements were:
(a) the introduction of elliptic orbits; (b) allowance for an orbiting motion
of the nucleus; and (c) the consideration of relativistic mass effects. We
discuss each of these in turn.

a. Elliptic orbits are useful in the interpretation of the shell and sub-
shell structure of the atoms of the elements and the arrangement of
the elements in the periodic table.

b. Allowing for nuclear motion, with the nucleus and electron both
orbiting around their common center of mass, introduces a small
dependence of the Rydberg constant on the mass of the nucleus.
As a consequence, different mass isotopes of the same element have
slightly different emission frequencies.4 Deuterium, the heavier and
rare stable isotope of hydrogen, was discovered in 1932 in the spectra
of naturally occurring hydrogen samples and was later isolated in
the laboratory.

c. Consideration of relativistic effects allowed Sommerfeld to calculate
the breakup of the simple model’s single frequency into the small
number of closely spaced “fine structure” components observed with
high quality optical equipment.

7. Limitations of the Model

Despite the satisfactory manner in which the Bohr-Sommerfeld ap-
proach accounts for the allowed energies and spectral frequencies of atomic
one-electron systems, the model is seriously deficient and incomplete in
several ways.

1. The assumption that angular momentum is quantized, Eq. (3), is
highly arbitrary and introduced merely on the basis that it leads
to results which agree with observation. It is now known that the
angular momentum assignments in Eq. (3) are incorrect; that, for
example, the ground state of hydrogen has zero angular momentum,
not the one h̄ of angular momentum assumed in the Bohr model.
This is related to the fact that the ground state of hydrogen has
spherical symmetry, not the planar symmetry implied by the Bohr
model.

4See “Nuclear Magnetism and Hyperfine Structure” (MISN-0-541).
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2. The well-established result of classical physics that an accelerating
electric charge is the source of electromagnetic radiation is com-
pletely ignored in the Bohr model. While the electron is in stable
orbit, it continuously experiences centripetal acceleration. The Bohr
model assumes the electron does not radiate energy for that would
lead to the rapid collapse of the atom with the electron quickly spi-
ralling into the nucleus while emitting a continuum of frequencies.
Radiation is assumed to be emitted only while the electron jumps
from one stable orbit to another.

3. The actual mechanism of the electron jump is unspecified, and it
is not clear what, if anything, triggers the jump and how one can
describe the system at times when the electron is in transit from
one stable orbit to another. Lacking such a description, it is impos-
sible to account for the observed intensities of the spectral emission
frequencies.

4. The Bohr-Sommerfeld approach, on extension to atomic systems
with more than one electron, is incapable of giving correct results
even after the much increased computational complexities are sur-
mounted. This is, of course, a major limitation and was a source of
considerable disappointment at the time of the introduction of the
model.

5. It is just about impossible to see how atoms with pellet-like orbit-
ing electrons can ever produce stable chemical combinations of any
kind: the Bohr-Sommerfeld model does seem capable of producing
an acceptable theory of the chemical bond.

8. The Quantum Mechanical Atom

8a. Overview. All the above difficulties were eventually removed
through the discovery of the wave-like properties of electrons and the
development of non-relativistic and, later, relativistic quantum mechan-
ics as the theoretical framework for dealing with the fundamentally dual
wave and particle character of the electron.

These theories de-emphasize the precise location and speed of the
electron as a particle and encompass more natural but more elaborate
versions of angular momentum quantization.5

5See “DeBroglie Waves” (MISN-0-240).
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8b. Energy Levels. For one-electron systems, Bohr’s energy formula
with Sommerfeld’s corrections, is duplicated by modern quantum theory,
although Sommerfeld’s relativistic correction now has a different origin,
namely, as a magnetic interaction between the spin of the electron on its
own axis and its orbital motion, giving rise to the fine structure effects.

For systems with more than one electron, the quantum mechanical
calculation of the allowed energies of the systems are lengthy and complex
and are generally carried out numerically on high-speed computers. The
most important point about these calculations is that the results agree
with the experimental values to the accuracy of the computer algorithms,
generally up to five significant digits.

Simple approximate energy formulas exist only for one-electron atoms
and for the alkali metal atoms which are one-valence-electron atoms.

8c. Spectral Line Widths. One important prediction of the quantum
theory is that atomic energy levels, except for the ground state level,
are not infinitely sharp but show small, non-zero spreads in energy ∆E
around their respective central values. As a result, the spectral emission
frequencies also show a spread or “natural line width,” in agreement with
observation.6 Other effects, including collisions and Doppler shifts, give
spectral line broadening beyond that due to the natural line width.7

8d. Hyperfine Structure. Many nuclear isotopes have an intrin-
sic spin motion, the nuclear spin, which interacts magnetically with the
electronic motion to produce so-called “hyperfine structure” effects which,
along with other nuclear interaction effects, lead to a further improvement
in agreement between theory and experiment (to about seven significant
digits).8 Still further improvement is obtained when quantization of the
internal electric and magnetic fields of the atom are included. These
quantum electrodynamical effects bring agreement between theory and
experiment to eight or nine significant digits, the limit of accuracy of
current measurement techniques.
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Glossary

• Bohr radius: the radius of the first Bohr orbit, often used as a unit
of measurement on the atomic scale.

• Rydberg constant: a combination of fundamental physical constants
that gives the magnitude of the hydrogen atom ground state energy
(13.6 eV). The Rydberg constant can be derived from the Bohr Model.
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PROBLEM SUPPLEMENT

hc = 1.2397KeVnm

c = 3× 108m/s

amu= 0.931GeV/c2 = 931MeV/c2

MH = 1.00797 amu

1. If an electron behaved like a classical charged particle undergoing an ac-
celeration (centripetal), it would radiate electromagnetic energy. Thus
it would lose energy and subsequently begin to spiral downward and
eventually collapse onto the nucleus. For a particle of charge e the rate
of radiation of energy is given by:

power =
2

3

m

c

v4

r
,

where m is the particle’s mass, v is the particle’s speed, and r is the
orbital radius.9 Calculate the length of time required for an electron in
orbit at the first Bohr radius (n = 1) about a hydrogen nucleus (Z = 1)
to radiate an amount of energy equivalent to its initial kinetic energy,
causing the atom to collapse. Assume the radiated power remains
constant.

2. A muon is a particle similar to an electron, with charge −e, but with
a mass of 105.66MeV/c2, approximately 200 times the mass of an
electron. A “µ-mesic atom” can be constructed out of a proton and
a muon, interacting electrostatically. Calculate the first three allowed
energy levels of the µ-mesic atom and draw an energy level diagram to
illustrate them.

9W.Panofsky and M.Phillips, Classical Electricity and Magnetism, p. 365,
Addison-Wesley (1962).
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Brief Answers:

1. t = 2.48× 10−15 sec

2. Energy
zero n =∞

−312.4 eV n = 3

−703.0 eV n = 2

−2812 eV n = 1
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MODEL EXAM

1. See Output Skills K1-K5 in this module’s ID Sheet. One or more of
these skills, or none, may be on th actual exam.

2. Calculate the first four allowed energy states of a C+5 hydrogen-like
ion. Sketch the energy levels roughly to scale on an energy level dia-
gram. The ground state energy of hydrogen is −13.6 eV. The normal
carbon has 6 electrons.

Brief Answers:

1. See this module’s text.

2. Energy
zero n =∞

−30.6 eV n = 4
−54.4 eV n = 3

−122 eV n = 2

−490 eV n = 1
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