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Input Skills:

1. Solve a system of simultaneous linear equations (MISN-0-401).

Output Skills (Knowledge):

K1. Vocabulary: matrix, determinant, inverse of a matrix.

Output Skills (Rule Application):

R1. Add or multiply given matrices.

R2. Determine whether two given matrices are inverses of each other.

R3. Evaluate the determinant of a given 2× 2 or 3× 3 matrix.

R4. Write a given system of linear equations in matrix form.

External Resources (Required):

1. The Mathematics of Physics and Chemistry by H.Margenau and
G.M.Murphy, Second Edition (Van Nostrand: New York, 1956).
For availability, see this module’s Local Guide.
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MATRIX ALGEBRA

by

J.H. Hetherington
Michigan State University

1. Introduction

Matrix Algebra is an extremely compact and powerful way of doing much
of the mathematics in physics. Almost all of the physics which uses matrix
algebra could be done without matrix algebra—but matrix algebra is
a much more compact way of doing things. With matrix algebra the
theory of linear equations and vector algebra are both combined into one
subject.

2. Resources

Study the following readings. The excerpts are from The Mathematics of

Physics and Chemistry by H.Margenau and G.M.Murphy, Second Edi-
tion (Van Nostrand: New York, 1956), hereafter designated MM. For
availability, see this module’s Local Guide.

Skill: Readings:
K1a Sections 10.0, 10.1
K1b Sections 10.2
K1c Sections 10.3, 10.5, and 10.7 to “A = diag(A1,A2. . . )”

“The transposed matrix. . . ” to “The rule holds for any num-
ber of factors.”

R1 Section 10.6, up to eq. 10-7
R2 Section 10.7
R3 Section 10.3
R4 Section 10.8, up to eq. 10-12, and Section 10.9 .

3. Matrix Manipulation

Note that matrix multiplication as defined in eq. 10-6 of MM is equivalent
to this scheme:
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Multiply columns of the second matrix by rows of the first matrix. [The
product is the first element of the row times the first element of the
column plus the second element of the row times the second element of
the column, and so on.] The results is placed in the row and column of
the resultant matrix corresponding to the number of the row of the first
matrix and the number of the column of the second matrix. We illustrate
this procedure:

1. Take first row of A and first column of B

A

A

.

.

.

11

21

B

B

.

.

.

11

21

A

A

.

.

.

12

22

B

B

.

.

.

12

22

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

first row of A:
(

A11 A12 . . .
)

first column of B:













B11

B21

·

·

·













2. Multiply row and column to obtain a single number:

C11 = A11B11 +A12B21 +A13B21 + . . .+A1NBN1

3. Place this number in the first row and column of C:












C11 · . . .
· · . . .
· · . . .
· · . . .
· · . . .













4. Take first row of A and second column of B:

A

A

.

.

.

11

21

B

B

.

.

.

11

21

A

A

.

.

.

12

22

B

B

.

.

.

12

22

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

6



MISN-0-301 3

5. Multiply and obtain:

C12 = A11B12 +A12B22 +A13B22 + . . .+A1NBN2

6. Place in first row and second column of C:












C11 C12 . . .
· · . . .
· · . . .
· · . . .
· · . . .













7. Continue in this fashion until all the elements of the product matrix
have been determined.

With practice you can easily do this mentally for small (2× 2 and 3× 3)
matrices.

4. 2× 2 and 3× 3 Determinants

a. Caution: This method does not generalize to larger determinants.

(i) 2 × 2: Take the product on the principle diagonal and subtract
the product on the cross diagonal:

a     b

c     d

a     b

c     d

a     b

c     d
= ad – cb= –

(ii) 3 × 3: Take the product on the principle diagonal and subtract
the product on the cross diagonal:

a     b     c

d     e     f

g     h     i

a     b     c

d     e     f

g     h     i

a     b     c

d     e     f

g     h     i

= aei + bfg + dhc – ceg – bdi – hfa

= –

The arrows pass through factors of the various terms.

b. Laplace’s expansion applied to a 3× 3 determinant:
∣

∣

∣

∣

∣

∣

a b c
d e f
g h i

∣

∣

∣

∣

∣

∣

= a

∣

∣

∣

∣

e f
h i

∣

∣

∣

∣

− b

∣

∣

∣

∣

d f
g i

∣

∣

∣

∣

+ c

∣

∣

∣

∣

d e
g h

∣

∣

∣

∣

= a(ei− fh)− b(di− gf) + c(dh− ge).
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 301.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

1. a. Multiply: (
1 2
0 3

)

·

(

3 2
1 4

)

=?

b. Add: (
a b
−b d

)

+

(

a 2b
b 0

)

=?

2. Show that (
cos θ sin θ
− sin θ cos θ

)

=

(

cos θ − sin θ
sin θ cos θ

)

−1

3. a. Find the determinant of: ∣
∣

∣

∣

a b
b a

∣

∣

∣

∣

b. Find the determinant of:
∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
1 1 1

∣

∣

∣

∣

∣

∣

4. Multiply:

a. (
a b
b −a

)(

a
2a

)

b.
(

a 2a
)

(

a b
b −a

)

c.
(

1 2
)

(

2
1

)

d. (
2
1

)

(

1 2
)

5. Use Problem 2 to solve these linear coupled equations for x and y:

(cos θ)x+ (sin θ)y = 1

(− sin θ)x+ (cos θ)y = 2

Use the matrix inverse method of Sec. 10.9, Margenau and Murphy.

6. Special Matrices: You should know, without actually multiplying, the
result of multiplying:
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(

1 0
0 1

)

×

(

any matrix A
any column matrix

)

However, for practice right now, carry out the multiplication explicitly.

Brief Answers:

1. a. (
5 10
3 12

)

b. (
2a 3b
0 d

)

2. Multiply and get unit matrix:
(

cos θ sin θ
− sin θ cos θ

)(

cos θ − sin θ
sin θ cos θ

)

=

(

cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ
− sin θ cos θ + cos θ sin θ sin2 θ + cos2 θ

)

=

(

1 0
0 1

)

3. a. a2 − b2

b. (1)(5)(1)+(2)(6)(1)+(3)(4)(1)− (3)(5)(1)− (4)(2)(1)− (1)(1)(6) =
5 + 12 + 12− 15− 8− 6 = 0

4. a. a column matrix:

(

a(a+ 2b)
a(b− 2a)

)

b. a row matrix:
(

a(a+ 2b) a(b− 2a)
)

c. a 1× 1 matrix, a scalar: 4

d. a 2× 2 matrix:

(

2 4
1 2

)

5. The problem can be written:

(

cos θ sin θ
− sin θ cos θ

)

·

(

x
y

)

=

(

1
2

)

Multiply by inverse (which we know from Problem 2):
(

x
y

)

=

(

cos θ − sin θ
sin θ cos θ

)(

1
2

)

=

(

cos θ −2 sin θ
sin θ +2 cos θ

)

x = cos θ − 2 sin θ; y = sin θ + 2 cos θ

6. Same matrix A or same column matrix.
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MODEL EXAM

1. See Output Skill K1 in this module’s ID Sheet.

2. Prove that these two matrices are inverses:
(

1 1
−1 1

)

and

(

1/2 −1/2
1/2 1/2

)

3. Find the determinants of: (a): ∣
∣

∣

∣

2 2
3 1

∣

∣

∣

∣

and (b):
∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
3 3 1

∣

∣

∣

∣

∣

∣

4. Evaluate: (A+B)C where:

A =

(

1 2
3 4

)

; B =

(

4 2
2 1

)

; C =

(

1 2
4 3

)

5. Using information from Problem 2, solve the equations:

(1/2)x− (1/2) y = a

(1/2)x+ (1/2) y = b

Brief Answers:

2. Multiply and get: (
1 0
0 1

)

3. a. −4

b. 5 + 36 + 36− 8− 18− 45 = 77− 71 = 6

4.
=

(

5 4
5 5

)

·

(

1 2
4 3

)

=

(

21 22
25 25

)

5. (
x
y

)

=

(

1 1
−1 1

)(

a
b

)

=

(

a+ b
−a+ b

)

x = a+ b

y = −a+ b
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