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EXPONENTIAL DECAY
by
Peter Signell

1. Nuclear Decay: Exponential

la. The Exponential Decay Law (EDL). Suppose we examine
identically prepared systems belonging to a single nuclear species which
decays radioactively. One of the first experiments which comes to mind
is that of measuring the times at which the decays occur in the sample
at hand. When the decays have finally ceased, one can count the decays
which were recorded and thereby learn the original number of radioactive
systems which were undecayed at the beginning of observation. Then by
subtraction one can find the number of such undecayed systems left at any
particular time during the observations, and this number can be plotted
as a function of time. Tens of thousands of such experiments have been
performed on a great variety of decaying species with varying numbers
of initial systems, and these experiments have led to the Exponential
Decay Law, hereafter abbreviated EDL.! With few exceptions, the data
on radioactive decays appear to be in agreement with this statement of
the EDL: The number of systems still undecayed at time t, designated
N(t), is a decaying exponential function of time:?(see Fig.1)

N(t) = N(0)e . Question: [Q-1] (1)

The “decay constant,” A, is uninfluenced by environmental characteristics
such as temperature and pressure:? it is a characteristic number for each

I1Not a widely used abbreviation.
2 Question: [Q-1] refers to Question 1 in this module’s Problem Supplement.
3Except for one rare type known as “K-capture”.

N(0)-
N(t)=N(0)e-4t
N(t) ‘)/
0
0 Time Figure 1. .
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nuclear species.

1b. Decay-Constant and Mean-Life Values. Values of the decay
constant range from 1 decay in 10'2 years for the alpha decay of Sm'®? to
1 per 10723 second for the strong decay of the rho meson. The number
of undecayed systems at time zero is usually under the control of the
experimenter. For an exponentially-decaying species, its mean life # can
be shown, using calculus, to be the inverse of its decay constant:*

F=1/\. 2)

lc. Half-Life. The time it takes for half a sample to decay is called
the sample’s “half life,” #; /5

N(ty/2) = (1/2) N(0). (3)
Then we can relate the half and mean lives (See Appendix B for details):
t1/2 :E»gn 27 (4)

where t is the system’s mean life. Half life is often quoted in scientific
literature because it is easily visualized and measured. It can be applied
at any time t1, thereby giving the time when half the ¢; sample will have
decayed. Substitution of Eq. (4) into Eq. (1) yields the interesting relation:

Help: [S-5]°
t/ti/2
N(t):N(O)X<%> / .

This says that after three half lives there is only one eighth of the sample
remaining undecayed.

Note that one does not have to begin time zero when the sample
is created: no matter when one examines a sample and simultaneously
starts time running, at one half life later just half the observed sample
will remain.

1d. Rate Equation. For exponential decay, the rate of decay, R(t),
obeys an equation similar to that for the number of undecayed systems:

R(t) = R(0)e™™, ()

where A is the same decay constant that occurs in the number equation,
Eq. (1). The rate R(t), is usually quoted in units of “number of disinte-
grations per unit time.” Here are three examples:

4See Appendix B for details.
5For help, see [S-5] in this module’s Special Assistance Supplement.
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6.12 disintegrations per second
186 dis./min
1.562 x 107? dis. /yr.

2. Comparison of Ed] to Experiment

2a. Results of One Experiment. The exponential number and rate
equations do not really coincide with what one usually finds experimen-
tally. A typical set of experimental observations is shown in Fig. 2, where
each vertical bar represents the total number of decays counted in the
corresponding time interval or bin. Note that, far from obeying the mono-
tonically decreasing exponential decay function of the EDL, some of the
later bins have more counts than earlier bins. Furthermore if one took
a complete second set of observations with the same original number of
identically prepared systems, the second-set data would not reproduce
those of the first set. The tops of the bars for the second set would still
fluctuate about the same smooth exponential curve but the fluctuations
would be unpredictably different.

2b. Repetitions of the Same Experiment. If one repeated the
Fig. 2 experiment many times and kept adding the new observations into
the corresponding time bins, the vertical scale in Fig. 2 would have to be
continually changed in order to keep the exponential curve in the same
place on the graph paper. As the number of counts in each bin increased,
the fluctuating appearance of the tops of the bins would decrease and the

Number
of decays

Time —

Figure 2. Typical results of decay measurements for a set
of radioactive systems. The fluctuations are not due to ex-
perimental error.
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centers of the tops would appear to approach the smooth curve. Of course
the fluctuations would still be there but they would become very small
on the scale of the graph.

2c. The Number of Systems Involved. It is now obvious that one
must always write next to the exponential rate and number equations;
“valid only as N (t) — 0o.” However, it is possible to rewrite the equations
and the basic assumption so as to be valid for any number of systems,
even for a single decaying system. To do so, however, we have to change
to a probabilistic description. Question: [Q-3]

3. The Probabilistic Edl

3a. Probability Applied to Decay. The problem is to cast the EDL
and its rate equation into a form which is valid for a finite number of
systems, even for a single decaying system. The solution is to rewrite
the EDL in terms of the probability P(t) that any single specific system
will still be undecayed at time t. Since all the decaying systems are
identically prepared, each will have an identical time-evolving probability
of still being undecayed.

3b. The Probabilistic EDL. Statistically, the probability of a sin-
gle system still being undecayed at time t is defined experimentally and
theoretically as the limit of the fraction of undecayed systems at that
time: N(t)
t
P(t) = lim —2, 6
where N(0) represents the total number of systems, decayed and unde-
cayed. Applying this to the number and number rate equations, we get
the probabilistic exponential decay law (EDL):

P(t) = e M, (7)

and its rate equation:
r(t) = e M. (8)

Evaluating the law at time zero, we find:
P(0) =1.00, (9)

which says that there is a 100% probability that the system is undecayed
at time zero. That time is, of course, the time of creation of the system.

Our new exact statement of the basic assumption is:
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The rate of decay of the probability P(t) is, at any time, propor-
tional to the undecay probability P(¢) remaining at that time.

As an equation, this basic assumption is written:

r(t) = AP(t). (10)

3c. Constant \: No Internal Clock. The basic EDL assumption,
stated above, carries the implication that the proportionality constant A
is independent of time. This means that all times are the same to an
undecayed system; that its character remains completely unchanged until
the instant of its decay. Can you swallow that? Usually, if something is
going to decay it must have an internal clock of some kind which runs
down: it must “age” until that cataclysmic moment when the vital el-
ement stops. Without such an aging process, how can an EDL system
decay at all? The derivation of the EDL gives no answer; for that one
must look to Quantum Mechanics.

3d. The “No-Aging” Assumption and QM. The mechanism of
radioactive decay is generally described by Quantum Mechanics, which
views exponential decay as no more than a mathematical approximation
to a certain segment in the life of a radioactive system. For example, the
standard model of a-decay uses Quantum Mechanics’ Time-Dependent
Schrodinger Equation. This equation nicely produces a time-evolving
probability for all except completely stable (non-decaying) systems. Thus
for decaying (unstable) states it always violates the “no-aging” assump-
tion of exponential decay summarized in Eq. (10). Nevertheless, the Time-
Dependent Schrodinger Equation does produce the almost-exponential
behavior observed for appropriate segments in the lives of appropriate
systems.® Most radioactive systems of use in industry and basic research
have enormous periods of time over which the EDL is an extremely accu-
rate approximation and the “aging” is extremely small.”

MISN-0-26/ 6
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Figure 3. Ilustrative example of logarithmic decay as seen
on a semi-log plot. The mean life is: ¢ = 1.67 min.

4. Deducing Mean Life From Data

4a. The Semi-Log Plot. The first step in analyzing decay data is
to make a semi-log plot. This means that a graph is made in which the
vertical axis is effectively the logarithm of the dependent variable while
the horizontal axis is the independent variable. This is accomplished by
plotting each datum on a piece of semilog graph paper or, equivalently, by
plotting the logarithm of each datum on linear graph paper as in Fig. 3.
If the data fall on a straight line, the decay is exponential.®

4b. Mean Life from Number Data. For exponential decay data
which are the number of undecayed systems at various times, the mean
life is just the negative inverse of the semi-log plot’s slope:

t=1/X\ A = —slope(fn N vs. t).

You can easily check the value given in the caption for Fig. 3, using these
formulas. Help: [S-3]

4c. Mean Life from Rate Data. The mean life can be deduced
from decay-rate data in a manner exactly parallel to that for number-of-
undecayed-systems data. This is because the basic equation for the decay

6See “Quantum Tunneling Through a Barrier: Pictures of a-Decay” (MISN-0-
250) for a pictorial presentation of the three main segments in the lives of quasi-
stable systems. The pictures and film were generated by solving the Time-Dependent
Schroddinger Equation on a computer.

"To obtain a feeling for the conditions under which this happens, see “A Soluble
Model of Radioactive Decay” (MISN-0-312, under construction).

8For a quick examination of the relationship between exponentiality and semi-log
plots, see Appendix A, this module.

10
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rate has exactly the same mathematical form as Eq. (1) for the number
N(t). Then the decay constant A can be obtained immediately from a
plot of [¢n R(t)] vs [t] and ? follows from \.°

4d. Dealing With Data Scatter. Real-life data do not fall on a com-
pletely smooth curve but rather show a random-looking scatter about such
a curve (see Fig.2), and this must be dealt with in deducing a mean life.
The scatter itself has two unrelated origins: experimental uncertainties
or “errors,” and the ever-present quantum fluctuations. The effect of the
former can usually be reduced through better and/or more costly experi-
mental design, but the effect of quantum fluctuations can be reduced only
by increasing the number of data. Methods for dealing with such data-
scatter are presented elsewhere!® but an understandable effect is that the
deduced mean life value is made uncertain. Graphically speaking, the
random character of the fluctuations make uncertain the location of the
line on the semi-log plot. That uncertainty is transferred to the line’s
slope and hence to the mean life. In many experimental situations, how-
ever, the data are so large in number that they make the )\ and ¢ accurate
enough for practical applications.
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A: Semi-Log Plots and Exponentials

An exponential decay function produces a straight line on a semi-log plot,
and the slope of that line is the negative of the decay constant A\ where,
for example,

f(x) = £(0) exp(=Aa).

9Practical applications almost always use rate data: see “Some Uses of Radioac-
tivity” (MISN-0-252), in which standard units of radioactivity measurement are intro-
duced and used.

10See “Linear Least Squares Fits to Data” (MISN-0-162, under construction).

11
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To prove these relationships, we take the natural logarithm of the above
equation, getting:'' We now define a new dependent variable,

y(x) = o f(x),

which linearizes the relationship between the new dependent and inde-
pendent variables:

y(z) = y(0) — Az.

Thus plotting (y) vs. () on a graph produces a straight line whose slope
is (—A), the negative of the decay constant.

B: Relation of Mean and Half Lives

We use these three equations from the main text of this module:

F=1/x (3)
N(ti/2) = (1/2) N(0) (4)
N(t) = N(0) e M (2)

Follow these steps:

1. Evaluate the time in Eq. (2) at ¢/, wherever ¢ occurs.

2. In the result of Step 1, substitute Eq. (4) for N(t;/2) and then cancel
the N(0) factors.

3. Take the natural logarithm of both sides of the result of Step 1
(follow the rules shown in Appendix A).

4. In the result of Step 3, substitute A from Eq. (3) to get:
t1/2 = t_ n 2,

which is the desired result.

HNote: In(AB) = ¢n(A) + tn(B); and: fnexp(C) =C.

12
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PROBLEM SUPPLEMENT

Note: problems 8 and 9 also occur on this module’s Model Exam.
1. By direct substitution of ¢ = 0 in Equation (1), determine and check
the meaning of N(0).

2. Explain the correspondence between data and the exponential decay
law, including time-bin fluctuations and the changes in their signifi-
cance as the number of systems is increased.

3. Show that Eq. (9) follows from the preceding equations.

S

. Verify Eq. (2).

5. Sketch a curve, on a linear plot, which is an exponential function and a
curve which is not. On a semilog plot, sketch a curve which represents
an exponential function and one which does not.

6. From the observations shown below, determine the mean life for the
species being observed. Help: [S-1]

-t —-
b0 | | :
() 1s 25 3s
_‘|0 —+ °
-20 + .
-30 + .

7. From the three rate observations reported below, show graphically that
the data are in agreement with exponential decay and determine the
mean life of the species. Help: [S-2]

13
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t:
0.00sec
1.00 sec
2.00 sec

PS-2

R(t) :
2638/sec

755 /sec

216/sec

8. Which of the curves below could not correspond to y(z) being

a decaying exponential function of z?

C

y(x) \
D

X —

Justify your choice(s).

ny(x)

X —

9. From the three observations reported below, show graphically that the
data are in agreement with exponential decay and determine the mean

life of the species.

t:

0.00 min.
2.00 min.
4.00 min.

Brief Answers:

6. 10s.

N(t):
639
217

73

7. 0.799s; graph of fn R(t) vs. t is a straight line.

8. A, B, CE,F, H
9. 1.85min.

14
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-Problem 6)
AlnN  —.10 -

1 = = = — A = 1 = 1 .
slope Az s A; t=1/A=10s
(from PS-Problem 7)

In 2638 = T7.878

> diff = —-1.251
In755 = 6.627

> diff = —1.252
216 = 5375

AnR  —1.251
At 1s

slope = —X; t=1/A=0.799s.

S-3 (from TX-4b)
AtnP -3
At 5min

slope= = -\ t=1/A=1.67min.

(from TX-1c)
From the text: N(t) = N(0)e™; L/A=1=ty5/tn2.
Substituting one into the other:

N(t) - N(O)e*t/(tl/z&ﬂ) — N(O) [e—énﬂ t/t1/2 _ N(O) [1/2]t/t1/2.

15

MISN-0-26 ME-1

MODEL EXAM

1. See Output Skills K1-K2 in this module’s ID Sheet.

2. Which of the curves below could not correspond to y(x) being
a decaying exponential function of x?  Justify your choice(s).

A
E
$ B $ F
y(x) c Iny(x) =8
M H
X—* X —

3. From the three observations reported below, show graphically that the
data are in agreement with exponential decay and determine the mean
life of the species.

t: N(t):
0.00 min. 639
2.00 min. 217
4.00 min. 73

Brief Answers:

1. See this module’s text.
2. See this module’s Problem Supplement, problem 8.

3. See this module’s Problem Supplement, problem 9.
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