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Input Skills:

1. Calculate the angular momentum of a particle in a circular orbit
(MISN-0-41).

2. Helpful: Calculate the magnetic dipole moment of a current loop
and the energy of a dipole in a magnetic field (MISN-0-130).

Output Skills (Knowledge):

K1. Derive the expression which relates the magnetic moment of a
circulating charged particle (in a circular orbit) to the angular
momentum of that particle.

K2. Calculate the possible energy change that occurs when a circu-
lating charged particle is placed in an external magnetic field.
Compare the classical result with the correct quantum mechan-
ical result.

Output Skills (Rule Application):

R1. Given a system which has two component parts, which have an-
gular momentum quantum numbers `1 and `2, determine the pos-
sible values of the total angular momentum of the system and the
possible values of its projection along any given direction.

External Resources (Required):

1. Physics, M.Alonso and E. J. Finn, Addison-Wesley Publ. Co.,
Reading, MA (1970). For access to these readings, see this mod-
ule’s Local Guide.

2. Elementary Modern Physics, R. T.Weidner and R. L. Sells, Allyn
and Bacon, Boston (1980). For access, see this module’s Local

Guide.
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QUANTIZED ANGULAR MOMENTUM

by

J. S.Kovacs

1. Introduction

The electromagnetic interaction (a single basic interaction, not two
independent ones) is the fundamental interaction responsible for all the
normally observed properties of matter: chemical, biological, and physi-
cal properties, etc. This statement, however, requires qualification. These
properties follow from the electromagnetic interaction only after you ac-
cept the existence of the nucleus in the nuclear model of the atom and
some basic changes in the laws of physics. (Properties of the nucleus re-
quire the recognition of a new interaction in addition to the electromag-
netic.) These basic changes in the physical laws come to be recognized
only when a detailed study of atomic systems is made.

The observed details of atom structure are not explained by the so-
called classical laws of physics. The introduction of quantization opened
the way for the explanation of these phenomena, leading to the devel-
opment of quantum mechanics. In particular, the space quantization of
orbital and spin angular momentum combined with the Pauli Exclusion
Principle explains some of the observed features of the electromagnetic
structure of atoms, molecules and solids. Angular momentum, specifi-
cally, is the subject of this module.

2. Suggested Readings

a. Read section 18.5 of AF1 and, if you wish, sections 7-4 and 7-5 of
WSM.2

b. Read sections 7.6, 7.7 of WSM.

1AF is Physics, M. Alonso and E. J. Finn, Addison-Wesley Publ. Co., Reading, MA
(1970). For access to these readings, see this module’s Local Guide.

2WSM is Elementary Modern Physics, R. T. Weidner and R. L. Sells, Allyn and
Bacon, Boston (1980). For access to these readings, see this module’s Local Guide.
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Figure 1. Illustration of magnetic field and magnetic mo-
ment vectors. The x-axis is out of the page.

3. Comments on the Readings

In AF, Fig. 18.8 (a), above the words “magnetic field,” AF omitted a
smeared-out continuous spectrum between + (e/2m)BL and−(e/2m)BL.
This spectrum is to be contrasted with the (2`+1) set of discrete energies
of Figure 18.8 (b).

At the bottom of the second column of page 399 of AF you will find
the expression for the potential energy of a magnetic dipole ~M , in a region
where a uniform magnetic field ~B exists: Ep = − ~M · ~B. The source of this
expression is not mysterious and can easily be derived: see MISN-0-130
for a derivation.

Consider a uniform magnetic field along the y-axis and a magnetic
moment ~M in the y−z plane, as shown in Fig. 1. The torque on ~M , (again

referring to MISN-0-130) tending to line up with the magnetic field ~B is

~τ = ~M × ~B = −MB sin θ x̂ (into the page).

To keep it from lining up with ~B, an external agent must exert a
counter-torque of +MB sin θ x̂ (out of page, hence counterclockwise in
the sketch). To rotate infinitesimally through an angle dθ requires you to
do work |~τ |dθ if rotation is about the same axis as ~τ .

The torque on ~M , (again refer to Unit 130) tending to line it up with

the field ~B is τ = ~M × ~B sin θx̂ = −MB sin θx̂ (into page). To keep it

from lining up with ~B, an external agent must exert a countertorque of
+MB sin θx̂ (out of page, hence counterclockwise in sketch). To rotate
this moment infinitesimally through an angle dθ requires you to do work
|~τ |dθ if rotation is about same axis as ~τ .
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Figure 2. A charged particle in a circular orbit.

Note that |~τ |dθ is the angular analog of | ~F |ds for the case where

displacement ds is along the direction of ~F . So the work needed to rotate
~M from θ1 to θ2 is

W =

∫ θ2

θ1

MB sin θ dθ

W = −(MB cos θ2 −MB cos θ1)

W = Ep(θ2)− Ep(θ1),

from the definition of potential energy. So the potential energy function
is

Ep(θ) = −MB cos θ = − ~M · ~B
Note carefully, that not only is the magnitude of the angular momentum
vector ~L quantized (in the correct quantum theory): L =

√

`(`+ l)h̄
where ` = 0, 1, 2, . . .∞, any positive integer or zero, but also its possi-
ble projections along any arbitrary direction are limited to values m`h̄
(“space quantization”) where m` has possible values from +` to −` with
all integer steps in between. The paragraph following equation 18.21 of
AF and the discussion on the Zeeman effect cover this. However, there
they refer to the arbitrary direction as the “z-direction.” This you may
find misleading. The z-direction can be any direction in space: the possi-
ble projections would be the same. For example, a direction determined
by the orientation of a magnetic field ~B may be such a direction.

Question: What are the possible projections of ~L of an atom along the
direction of ~B if the atom is in a state characterized by ` = 2? The answer
is +2h̄, h̄, 0, −h̄ and −2h̄. The projection of ~L on any axis has only those
five possible values.

Question: How is the magnetic (dipole) moment of a circulating charged
particle, like the one in Fig. 2, related to its angular momentum?
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The magnetic moment of a current loop is defined as | ~M | = IA with the

direction of ~M determined by the right-hand rule (perpendicular to the
plane of the circular orbit, in the direction of the thumb of the right hand
when the fingers encircle the orbit in the direction of the current). What
is the current associated with this circulating charge? Suppose it goes
around ν times per second; that’s the frequency of the orbiting particle.
In radians per second ω = 2πν which is related to the speed v in the
orbit by v = ωr. The current associated with this charge is the number
of coulombs per second that go past any point in the orbit. That is qν,
the charge times the number of times it goes by per second. Thus

| ~M | = IA = (qν)(πr2) =
( qv

2πr

)

(πr2)

But from the definition of angular momentum,

|~L| = mvr (in same direction as ~M),

~M =
( q

2m

)

~L

If q is negative ~L and ~M are oppositely directed.

How is the energy of a system consisting of a circulating charged
particle affected if it is placed in a magnetic field? Consider the system
with no magnetic field present. The charged particle has mass and a
velocity so it has a kinetic energy in its orbit. It is bound in its orbit by
some force (presumably, the Coulomb force) so it has a potential energy.

It thus has some total energy E0. What happens when the ~B-field is
turned on? There is an additional potential energy that the system gets
which is given by EB = − ~M · ~B so that now the total energy is

Etotal = E0 − ~M · ~B

So the energy diagram (energy value of system increasing upward on di-
agram) becomes as shown in Fig. 3.

And because according to the Newtonian theory of mechanics all an-
gles θ between ~M and ~B are possible, the system can have any energy
between the maximum and the minimum. The shaded area of the previ-
ous figure shows the region of possible energies for the circulating charge
system in the field depending upon the angle ~M makes with ~B, the energy
spread being ∆E = 2| ~M || ~B|.

So if you had a large collection of such circularly orbiting particles
each with magnetic moment ~M (“atoms”), their orientations would be

8
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Figure 3. Illustration of a magnetic field spreading an en-
ergy level.

random with the moments, ~M , pointing in all possible directions. If you
then imposed an external magnetic field on this collection and measured
the individual energies of these atoms (How do you measure the possible
energy states of atoms? See Units 215 and 216), the energies you’d mea-
sure, according to the classical theory, would cover all possible energies
in this interval ∆E = 2| ~M || ~B| around E0. Without the field you’d detect
only energy E0 for every atom. However, what you’d actually observe
disagrees with the classical theory.

Not all energies between E0 +MB and E0 −MB are possible, only
certain sharply defined energies. The quantum mechanical explanation
for this is that the possible projections of the angular momentum ~L along
any direction is quantized, only certain multiples of h/2π being possible,
~L is also quantized, with only values [`(` + l)]1/2(h/2π) being possible,

` being zero or positive integers. The projection of ~L along any given
direction, for a given integer `, can only have values between `h̄ (h̄ ≡
h/2π) and −`h̄ with all integer values between +` and −`. Hence, instead
of the continuous energy spectrum shown above (with spread 2MB), there
are between the maximum and minimum only a discrete set of energies
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Figure 4. Obtaining the component of ~L along the ~B-axis.

possible, determined by the value of `, there being 2`+1 possible energies.
That’s because ~M = q~L/2m0 and ~M · ~B = q~L · ~B/2m0 = qLB cos θ/2m0.

But L cos θ = LB is the projection of ~L along the direction determined
by ~B (see Fig. 4).

The angular momentum quantization rule restricts LB to values `h̄,
(`− 1)h̄, (`− 2)h̄, . . ., etc. until by successive subtractions of unity from
` you get to −`. Thus

~M · ~B =

(

qh̄B

2m0

)

LB

where LB is quantized (LB is usually written as mh̄ where m takes on
the possible values `, `− l, `− 2, . . ., −`. Don’t confuse this m with the
particle mass, here written as m0.

4. Adding Angular Momenta

Suppose you have two angular momenta, ~L1 and ~L2. What’s the total
angular momentum of the combined system for which these two angular
momenta are separate components? Classically, you’d just add the two
parts vectorially to obtain the resultant ~LR (see Fig. 5).

For given values for the magnitude of ~L1 and ~L2 the magnitude of ~LR

can have a range of values between the maximum |~L1|+ |~L2| when the two

are parallel and | |~L1|−|~L2| | when they are oppositely directed, depending

upon the angle between the direction of ~L1 and ~L2. This angle can vary
continuously from 0◦to 180◦. That’s what is expected to be true from
the classical picture. However, because of the quantization of angular
momentum each of ~L1, ~L2, and the resultant ~LR can only have possible
magnitudes which are given by [`(` + 1)]1/2h̄ with the `’s restricted to

10
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Figure 5. Classical addition of two angular momenta.

integers, and their projections along a given arbitrary direction are each
given by some mh̄. If ~L1 has for its projection along some given direction
the value m1h̄, then it’s clear that the projection of ~LR (the resultant)
along the same direction must be (m1 +m2)h̄. If that is the projection of
~LR what is |~LR|? It obviously has some value [`(`+1)]1/2h̄ with an `-value
compatible with the value (m1+m2)h̄ for its projection. For concreteness
consider the following example. Suppose:

|~L1| = [`1(`1 + 1)]1/2h̄ with `1 = 1 and

|~L2| = [`2(`2 + 1)]1/2h̄ with `2 = 2.

i. What are the possible values for the projection quantum number,
m1? Ans: 1, 0, and -1.

ii. What are the possible values for the projection quantum number,
m2? Ans: 2, 1, 0, -1, -2.

iii. If along a specified direction the projection m1 has the value +1
while m2 = −2, what is the projection of the angular momentum
~LR along that same direction? Ans: −h̄

iv. If this is the value of the projection of ~LR what is the value of |~LR|,
the magnitude of the resultant angular momentum? Ans: That isn’t
unique. Many `-values have m = −1 as one of its possible projection
quantum numbers. In fact, every integer except ` = 0 has m = −1
among its possible projections.

v. What possible combinations of m1 and m2 can give you an m asso-
ciated with the resultant equal to m = 3? Ans: Only if m1 = +1

11
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and m2 = +2. Write it as (1,2) for convenience. For the given

`1 = 1 and `2 = 2 this is the possible way that the projection of ~LR

can have projection quantum number m = 3.

vi. What possible combinations of m1 and m2 can give you m = 4?
Ans: No combination. With `1 = 1 and `2 = 2 the maximum m1

is m1 = 1 and the maximum m2 is m2 = 2, so that the maximum
m = 3. This then tells you that the maximum `R is

|~LR| = [`R(`R + 1)]1/2h̄ is `R = 3.

vii. What possible combinations of m1 and m2 give you m = 0? Ans:
(1,−1), (−1,1), (0,0). Notice that if m2 = 2 or −2 there’s no way
m can be zero because the maximum and minimum m1 values are
1 and −1 respectively.

viii. With all possible m1 values combined with all possible m2 values list
all the possible values m can have (allow repeated values for m if the
same m, as in (vii) above, can be obtained by different combinations
of m1 and m2). Ans: 3, 2, 1, 0, −1, −2, −3, 2, 1, 0, −1, −2, 1, 0,
−1. There are 15 different values. Associated with each of `1 and
`2 there are (2`1 + 1) and (2`2 + 1) values of m1 and m2. So the
total number of combinations is the product (2`1 + 1)(2`2 + 1).

ix. What are the possible `R values that you can associate with these
m’s? Ans: The 7 numbers m = 3, 2, 1, 0, −1, −2, and −3 are
clearly the projections associated with `R = 3. The 5 numbers 2, 1,
0, −1, −2, belong to `R = 2 and the remaining m’s equal to 1, 0,
−1 belong to `R = 1. So concluding: If `1 = 1 and `2 = 2 the only
possible values the resultant ~LR can have are [`R(`R + l)]1/2h̄ with
`R = 3, 2, or 1. No other resultant is possible.

5. The General Addition Rule

If two independent angular momenta contribute to a system’s total
angular momentum,

~L = ~L1 + ~L2 (classical mechanics),

then quantum mechanically the allowed values of ~L and ~Lz are:

|~L| =
√

`(`+ 1)h̄

|~Lz| = m`h̄

12
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where ` is any integer in the range

|`1 − `2| ≤ ` ≤ (`1 + `2)

and, for a given `, m` is any integer in the range

−` ≤ m` ≤ `.

The cover of this module illustrates the popular “triangular” method of
adding angular momenta, wherein you pretend that `1 and `2 are integer-
length vectors (`1 = 2 and `2 = 1 on the cover). This method is not
meant to be taken literally.
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LOCAL GUIDE

To obtain the readings for this module, go to the Physics-Astronomy
Library and ask for “the readings for CBI unit 251.”
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PROBLEM SUPPLEMENT

1. Problem 18.9 in AF.

2. Problem 18.10 in AF.

3. Problem 18.11 in AF.

4. On the same sort of plot where the (classical) possible energies of an
atom in a magnetic field were sketched above, plot the energy spectrum
expected on the basis of quantum mechanics for the cases where ` =
0, 1, and 4.

5. Suppose you observe the energy spectrum of an atomic state when that
atom is in an external magnetic field and you see that the given energy
state splits up into 9 closely spaced energy levels when the magnetic
field is turned on. What is the value of |~L| for that state?

6. You make an observation of the projection of the angular momentum
of a system along some specified direction and measure that projection
to be 3h̄. What are the possible values of |~L| for which this could be
the projection?

7. In the same way as in the guided illustration in the text above, consider
the addition of two angular momenta with `1 = 4 and `2 = 2.

a. How many possible combinations of m1 and m2 are there of these
two sets?

b. How many different ways can the resultant m give m = 0? m = 1?
m = −2? List them.

c. List all of the possible values of m.

d. Collecting these above m-values into suggestive groupings, identify
them according to the `-values that they belong to.

e. Hence, what are the possible values of `R that you can get by com-
bining `1 = 4 and `2 = 2?

15
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Brief Answers:

1. |~L| =
√
6h̄; Lz = 2h̄, h̄, 0, −h̄ and −2h̄. Angles (similar to Fig. 18.7),

there are 5 of them, 2 above 0◦, 0◦, and 2 below 0◦.

2. When n = 3, there are ` = 2, ` = 1, ` = 0 as the possible value of `
(see Eq. 18. 21) . Assuming system is in the state n = 3, ` = 2 then
there are 5 levels into which the magnetic field splits the state. If it’s
state n = 3, ` = 1, the field splits it into 3 levels (such as Fig. 18.8 (b)
illustrates with a nine-level splitting) and if ` = 0, there is no splitting.
The magnetic energy difference (for ` = 2) is ∆E = eh̄B/2me =
2.31× 10−4 eV between adjacent levels. (Draw a level diagram similar
to Figure 18.8 (b) for this 5-level system). Note that AF has an error
in µB : µB = 9.2732× 10−24 J/T = 5.7883× 10−5 eV/T.

3. Again use Eq. 18.21, ` = n− 1 for circular orbit.

4. See Figure 18.8(b) on page 400 of AF. If ` = 0 there is no shift, E0

stays E0, a single line. With ` = 1 there are 3 lines evenly spaced, 9
with ` = 4.

5. |~L| = (20)1/2h̄ because there are (2`+1) levels which means that ` = 4.

6. If mh̄ = 3h̄, the associated ` may be 3, 4, 5, . . . up to ∞ (any integer

greater than 2). Hence |~L| can have possible values (12)1/2h̄, (20)1/2h̄,
(30)1/2h̄, . . . , etc.

7. a. 45

b. m = 0 can occur 5 different ways: (2,−2), (1,−1), (0,0), (−1,1), and
(−2,2). m = 1 can occur 5 different ways: (3,−2), (2,−1), (1,0),
(0,1) and (−1,2). m = −2 also can occur 5 different ways: (0,−2),
(−1,−1), (−2, 0), (−3, 1), and (−4, 2).

c. and d: 6, 5, 4, 3, 2, 1, 0, −1, −2, −3, −4, −5, −6; 5, 4, 3, 2, 1, 0,
−1, −2, −3, −4, −5; 4, 3, 2, 1, 0, −1, −2, −3, −4; 3, 2, 1, 0, −1,
−2, −3; 2, 1, 0, −1, −2.

e. `R can be 6, 5, 4, 3, 2. Note that if you add up the (2`R + 1) for
each of these `R values you get 13 + 11 + 9 + 7 + 5 = 45 which
is exactly the number of possible ways of combining m1 and m2:
(2`1 + 1)(2`2 + 1).
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MODEL EXAM

1. Starting from the definition of the magnetic moment of a point charge
moving in a circular orbit, derive the relation which gives the magnetic
moment of an electron which is in a circular orbit of angular momentum
~L. Get ~M = e/2me

~L.

2. Using this result derive the expression for the possible energy values
that an electron has in a state of orbital angular momentum ~L with
definite orbital quantum number ` when the atom is in a uniform magn-
etic field ~B = B0x̂.

Get: E = E0 + eh̄B0m`/(eme).

How many possible energy states are there? What is E0? What is the
spacing of the levels? How many different energy states are there when
~B → 0?

3. One Bohr magneton equals 5.66 × 10−4 electron-volts per tesla. In a
field B0 = 1.7 teslas, what is the energy gap between adjacent en-
ergy levels in a state of an atom for which ` = 6? What is the
total energy gap between the highest and the lowest energy levels?
1 tesla = 1weber/m2.

4. Suppose a system has two contributing angular momenta, `1 = 1 and
`2 = 2. State all possible values of the total angular momentum quan-
tum numbers (`, m`).

17
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Brief Answers:

1. See page 400 of AF, shaded region.

2. See text (there are 2`+ 1 levels).

3. Spacing between adjacent levels is µBB0, over-all energy “band” width
is 2µBB0` [see Figure 18.8(b)].

4. (` = 3; m` = −3,−2,−1, 0, 1, 2, 3)
(` = 2; m` = −2,−1, 0, 1, 2)
(` = 1; m` = −1, 0, 1)
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