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NEWTON’S SECOND LAW

FROM QUANTUM PHYSICS

by

Peter Signell

1. Introduction

1a. A Time-Dependent Equation Needed. Although the time-
independent version of the Schrödinger equation has had astonishing
successes in the domains of atomic, molecular, nuclear, and solid state
physics, and in chemistry, it cannot describe systems which change with
time; it cannot deal with transition rates, spectral line intensities, tun-
neling, or scattering. For such cases we need the equation which tells us
how wave functions change with time. Then, from the resulting time-
dependent wave function all observable quantities will be calculable.

1b. When Classical and Quantum Mechanics Coincide. In or-
der to justify the time-dependent equation found by Schrödinger, we will
argue that quantum mechanics and classical particle mechanics must co-
incide for certain cases. Then we will derive Newton’s Second Law as the
first term in a power series and will examine the next (correction) term
to determine the circumstances under which Newton’s Second Law is a
good approximation. Thus it will be apparent that quantum mechanics
is a more general theory than classical particle mechanics since the latter
is included within it.

2. Constant Force: Classical Behavior

When will an electron, say, act like a classical particle and when like
a quantum mechanical wave? One commonly given answer1 is that it will
act like a wave when its deBroglie wavelength is large compared to the
structural dimensions in an object with which it is interacting. Another
answer is that it will act like a classical particle when the size of its wave
packet is small compared to interacting structural dimensions. These two
statements are not very satisfactory, being vague2 and not entirely equiv-

1See “deBroglie Waves” (MISN-0-240).
2What is a Gaussian wave packet’s “deBroglie wavelength?” Perhaps, its RMS

uncertainty in position—but is that obvious? To what distance should the hydrogen-
atom-electron’s deBroglie wavelength be compared? To its non-existent orbital radius;
or perhaps to the size of the proton with which it interacts, a number 107 times smaller?
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alent. We will find a precise statement based on the Schrödinger equation
for the case where the above-stated wave packet condition becomes ex-
act; namely, in the case of a constant force field. A constant field has
no structure at all and hence there is no way we can say whether a wave
packet in it is “large” or “small.” This means that in a constant force
we may regard the wave packet as being as small as we wish so classi-
cal mechanics must apply exactly. Of course quantum mechanics must
also apply exactly because quantum mechanics is the fundamental overall
theory.

3. Mean Position as Particle “Position”

We have said that under a constant force a wave packet of any size
or shape must act like a classical particle, obeying Newton’s laws exactly.
But what part of the wave packet is it that is to obey, say, Newton’s
Second Law? Is it the leading edge of the wave packet, its trailing edge,
its middle? Since quantum mechanics deals with mean values,3 it would
seem natural to try the assumption that it is the wave packet’s mean
position which exactly obeys Newton’s Second Law for a constant force.
In one dimension, Newton’s Second Law for a wave packet’s mean position
is:

F (x̄) = m
d2x̄

dt2
, (F = ma) (1)

which says that the force at the particle’s position is to be equal to the
particle’s mass times the second time derivative of its position. Here
“position” means “mean position.”

4. Mean Velocity & Velocity of Mean Position

4a. The Time-Dependent Schrödinger Equation. The first step
in obtaining Newton’s Second Law is to obtain the particle’s velocity, the
velocity of its mean position:4

˙̄x ≡
dx̄

dt
=

d

dt

∫ ∞

−∞

ψ∗(x, t)xψ(x, t) dx =

∫ ∞

−∞

[

dψ∗

dt
xψ + ψ∗x

dψ

dt

]

dx.

(2)
One would expect that for a free packet or for one in a constant force field,
where classical mechanics holds, the right hand side of Eq. (2) would be

3See “Wave Functions, Probability, and Mean Values.”(MISN-0-243).
4We denote the time derivative of a symbol by a dot over it. This is a common

notation.
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equal to the mean momentum divided by the mass, which we shall call
the mean velocity:

˙̄x = p̄/m = v̄; constant force. (3)

Schrödinger discovered that the way to construct this equality was to
write the time-dependence of the wave function as:

ih̄
dψ(x, t)

dt
= −

h̄2

2m

d2ψ(x, t)

dx2
+ V (x)ψ(x, t). (4)

In the usual succinct notation this is:

ih̄ψ̇ = −(h̄2/2m)ψ′′ + V ψ. (5)

This is an addition to the rules for construction of the Schrödinger equa-
tion,5 added for cases where one wishes to see a wave function’s time
dependence. Equations (5) is called the Time-Dependent Schrödinger
Equation.

4b. Velocity of Mean Position Equals Mean Velocity. Substi-
tuting Eq. (3) and its complex conjugate6 into Eq. (2), we obtain:

˙̄x =
h̄

2im

∫ ∞

−∞

ψ∗′′xψ − ψ∗xψ′′ dx.

Integrating by parts or, equivalently, making the substitution

ψ∗′′xψ − ψ∗xψ′′ =
d

dx
(ψ∗′xψ − ψ∗xψ′)− (ψ∗′ψ − ψ∗ψ′) ,

and assuming the usual boundary conditions at infinity, we find:7

˙̄x =
h̄

2im

∫ ∞

−∞

(ψ∗′ψ − ψ∗ψ′) dx. [S − 5] (6)

The first term on the right hand side can be converted to the form of
the second term using another integration by parts and again applying
boundary conditions at infinity:8

∫ ∞

−∞

ψ∗′ψ dx = −

∫ ∞

−∞

ψ∗ψ′ dx.

5See “The Schrödinger Equation in One Dimension: Quantization of Energy”
(MISN-0-242).

6See “Some Simple Functions in the Complex Plane” (MISN-0-59).
7The notation [S-3] at the end of the equation indicates that help is available in

sequence [S-3] in this module’s Special Assistance Supplement.
8For wave packets whose probability is confined to finite distances from the origin,

ψ(±∞) = 0 = ψ′(±∞). See Appendix A, this unit, and “Wave Functions, Probability,
and Mean Values” (MISN-0-243).
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This converts equation (6) to:

˙̄x =
1

m

∫ ∞

−∞

(ψ∗(x, t)

[

−ih̄
d

dx

]

ψ(x, t) dx, (7)

hence:
˙̄x = p̄/m ≡ v̄. (8)

Thus the velocity of the particle’s mean position is exactly equal to its
mean velocity. Note that we made no restriction on the potential func-
tion, V (x), and so the result, Eq. (8), is valid for any force, constant or
not.

5. Force at Mean Pos. & Accel. of Mean Position

5a. Acceleration of Mean Position. To derive Newton’s Second
Law we need the acceleration of the mean position, for which we can
differentiate equation (7) with respect to time:

¨̄x ≡
d2x̄

dt2
= −

ih̄

m

∫ ∞

−∞

(ψ̇∗′ψ′ + ψ∗ψ̇′) dx.

Then by integration by parts and use of the boundary conditions at in-
finity:

¨̄x = −
ih̄

m

∫ ∞

−∞

(ψ̇∗′ψ′ − ψ∗′ψ̇) dx. [S − 1]

Substituting the time dependent Schrödinger equation, Eq. (3), and its
complex conjugate, and integrating by parts, we obtain the acceleration
of the particle’s mean position:

a = ¨̄x = −
1

m

∫

ψ∗V ′ψ dx = −
1

m

[

dV

dx

]

≡ +F (x)/m. [S − 2] (9)

5b. A Constant Force ⇒ Classical Mechanics. For a constant
force,

F (x) = F (x̄) = F = constant,

hence Newton’s Second Law is obeyed:

F = ma; (F = constant).

We conclude that, as anticipated, Newton’s Second Law is exactly obeyed
by a quantum mechanical wave packet in a constant force field.
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5c. The Case of a General Force. For a general force we need to
relate the mean force in (8) to the force at the mean position. To do this
we expand F(x) in a power series about the mean position of the wave
packet and then take the mean of the whole expansion. The expansion:

F (x) = F (x̄) + F ′(x̄)(x− x̄) +
1

2
F ′′(x̄)(x− x̄)2 + . . .

Then taking the mean:

F (x) = F (x̄) +
1

2
F ′′(x̄)∆2

x + . . . [S − 8] (10)

Here ∆x is the root-mean-square deviation of the wave packet from its
mean.9 Combining (9) and (10) we get:

ma ≡ m¨̄x = F (x̄) +
1

2
F ′′(x̄)∆2

x + . . . (11)

and the first term on the right side is the proper force for Newton’s Second
Law. For that term alone to be a good approximation, the next term must
be much smaller:

∆2
xF

′′(x̄)¿ F (x̄),

or:

If ∆2
x ¿

F (x̄)

F ′′(x̄)
then F ≈ ma. (12)

Equation (12) says that, for Newton’s Second Law to be valid, the size
of the wave packet must be much smaller than structure in the force
field, here represented by the relative inverse of the second spatial deriva-
tive.

6. Two Examples: F = ma and F 6= ma

6a. The Simple Harmonic Oscillator. As a very simple example
consider the one-dimensional simple harmonic oscillator, which has a lin-
ear force:

F (x) = −kx.

The second derivative, F ′′ , is zero and hence Eq. (11) becomes:

ma ≡ m¨̄x = F (x̄),

9See “Wave Functions, Probability, and Mean Values” (MISN-0-243).
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and Newton’s Second Law is obeyed exactly. One can envision some
wave packet oscillating back and forth in this harmonic oscillator poten-
tial, continually changing its shape, but with an exactly sinusoidal mean
position:

x̄(t) = A sinω0t; ω0 =
√

k/m.

6b. Coulomb Force: Hydrogen Atom Ground State. Now con-
sider the ground state of hydrogen, where r̄2 = a2

0, ∆
2
r = (3/4)a2

0, with
a0 ≡ h̄

2/(me2) ≈ 0.05 nm.10 Then:

F (r̄) = −ke
e2

r̄2
= −ke

e2

a2
0

,

F ′′(r̄) = −6ke
e2

r̄4
= −ke

6e2

a4
0

.

Putting these together, condition (12) is not met. Thus the electron in
the normal hydrogen atom (the ground state) does not obey Newton’s
Second Law. That statement is in correspondence with the fact that the
ground state wave function is spread out all around the nucleus. This
would appear to be a far cry from a classical picture where the electron
would have to be a tiny wave packet circling the nucleus.

¤ In a footnote to Section 2, a question is asked about the nuclear dimen-
sion to which a hydrogen atom electron’s wave packet should be compared.
What is the answer to that question?

It is interesting that condition (12) is met for the hydrogen atom for
n À 4, where n is the principal quantum number. For such states there
is very little probability near the nucleus. See for example, Introduction
to Quantum Mechanics, L. Pauling and R.Wilson, McGraw-Hill (1935).

¤ Show that the hydrogen atom electron will obey Newton’s Second Law
for nÀ 4, ` = 0, using the hydrogen wave functions found in almost any
Quantum Mechanics textbook.
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10For these values of ∆2
r
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A. Boundary Conditions At Infinity

In quantum mechanics one frequently encounters integrals of the
type:

I ≡

∫ ∞

−∞

d

dx
(ψ∗′xψ − ψ∗xψ′) dx = (ψ∗′xψ − ψ∗xψ′)|

+∞

−∞
. (13)

For a wave packet whose probability is confined to finite distances from
the origin, both terms are generally zero. For example, consider the wave
function for the simple harmonic oscillator:

ψ(x) = cxe−ax2/2,

where c and a are constants. The first term in equation (13) is:

|c|2(1− ax2)2e−ax2

x2

∣

∣

∣

+∞

−∞

.

Since a decreasing exponential (or Gaussian) eventually falls off faster
than any polynomial, we have that:

lim
x→∞

(1− ax2)2x2e−ax2

→ 0.

Thus the integral I of Eq. (13) is zero. Note that for any real wave function
(one without an imaginary part) the two terms of the integrand in (13)
add to zero and hence the integral is zero. This is true for the Gaussian
wave function used in the example.

11D, I. Blokhintsev, Principles of Quantum Mechanics, Allyn and Bacon, Boston
(1964), pp. 122-128. Blokhintsev also considers these phenomena in the transition to
classical mechanics: spreading of the wave packet, derivation of the Hamilton-Jacobi
Equation, and analogies to mechanics and optics.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-5a)

Only the second term of the integrand has been transformed. The pro-
cess is similar to that used in deriving Eq. (6).

S-2 (from TX-5a)

Substitute ψ̇ from Eq. (3), ψ̇∗ from the complex conjugate of Eq. 3. Re-
arranging terms and factors, this gives:

¨̄x = −
1

m

∫ ∞

−∞

[

h̄2

2m
(ψ∗′′ψ′ − ψ∗′ψ′′)(ψ∗V ψ′ + ψ∗′V ψ)

]

dx.

Now the first term can be written:

(ψ∗′′ψ′ − ψ∗′ψ′′) =
d

dx
(ψ∗′ψ′) , Help: [S-3]

and the second term:

(ψ∗V ψ′ + ψ∗′V ψ) =
d

dx
(ψ∗V ψ)− ψ∗V ′ψ. Help: [S-3]

S-3 (from [S-2])

∫ ∞

−∞

d

dx
[ψ∗f(x)ψ] dx = |ψ∗fψ|

∞

−∞
= 0,

because there is no probability at infinity or (in cases you have not yet
met) ψ∗fψ is the same at +∞ as it is at −∞. Similarly, quantities
involving ψ′ will also be zero. Also, see Appendix A.

S-4 (from TX-5c)

F (x) = F (x̄) + F ′(x̄)(x− x̄) + . . .
Take the average of both sides. Since the average is an integral (see
MISN-0-243 ), use the properties of integrals to write:
¯F (x) = F (x̄) + F ′(x̄) ¯(x− ¯)x+ . . .

where F (x) and F ′(x̄) are constants. Again, use the summative prop-
erties of integrals to see that:
(x− x̄) = x̄− x̄ = 0.

12
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S-5 (from TX-4b)

(i) make the suggested substitution; (ii) evaluate the argument of the
perfect differential on the boundaries (±∞) to get zero for that term.
The remainder is the result shown in Eq. (6).
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