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Input Skills:

1. Skills from “The Uncertainty Relations” (MISN-0-241).

2. Skills from “The Schroedinger Equation in One Dimension: Quan-
tization of Energy” (MISN-0-242).

Output Skills (Knowledge):

K1. Write the classical expression for the energy of an n-electron atom
and write the corresponding Schrödinger Equation.

K2. Explain how the average coulomb and kinetic energies of an arbi-
trary Hydrogen wave function depend on the diameter of the re-
gion containing the wave function and explain hot this determines
the size of the region containing the ground state wave function.

K3. Explain why the wave functions of Helium should be symmetric
upon interchange of the coordinates of electron 1 and electron 2.

K4. Explain the meaning, in terms of probability, of the expression
|ψ|2 dV1 dV2.

K5. Describe the simplification in the Schroedinger equation that re-
sults from setting V12 = 0. Show that the Schrödinger equation
reduces to two separate hydrogen-like equations whose solutions
can be combined to give an approximate solution to for Helium.

K6. Describe the “full shielding” approximation and show results for
the case V12 = kee

2/r1 for the electron 1 and V12 = kee
2/r2 for

the electron 2, similar to (8) above.

K7. Describe why the “best shielding” approximation is better than
those of K8 and K9 above.

External Resources (Optional):

1. Readings in K. Ford, Classical and Modern Physics, Vol. 3. For
access see the “Readings” section of this module’s Local Guide.

2. Readings in Introduction to Quantum Mechanics, L. Pauling and
E.Bright Wilson, Mc-Graw Hill, 1935. For access, see the “Book”
section of this module’s Local Guide.
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THE HELIUM ATOM:

AN INTUITIVE APPROACH

by

E.H.Carlson

1. Introduction

We will examine the ground state of the helium atom, the simplest
atom beyond hydrogen. At little cost in effort and considerable gain in
generality, we will formulate the problem for any 2-electron atom or ion
by allowing the number, Z, of protons to differ from 2. So by the word
“atom” we may also mean “ion.”

To good approximation, each of the 2 electrons moves independently
of the other, and they occupy individual wave functions of the same shape,
that is, a nodeless wave function of spherical symmetry. We will obtain
a succession of better approximations to the exact wave function. The
methods developed here can also be used for excited states, by introducing
a few additional concepts.

2. The Size of the Atom

[Note: A different presentation of the material in this section is given
in Section 23.12 of Ford.1 ]

We want to illustrate the trade-off between kinetic energy and poten-
tial energy in an atom which leads to a minimum energy (bound) state
for the atom. For hydrogen-like atoms the classical energy is:

E = Ek + Ep ,

where Ek is the kinetic energy,

Ek = p2/(2m) , (1)

and Ep is the potential energy

Ep = −kee
2Z/r .

1K. Ford, Classical and Modern Physics, Vol. 3. For access see the “Readings”

section of this module’s Local Guide.
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In the above equations, p, m, e are the momentum, mass and charge of
the electron and Z is the number of protons in the nucleus.

We obtain the Schrödinger equation from that energy by making this
substitution for p2 = p2

x + p2
y + p2

z:

px ⇒ −ih̄
∂

∂x
, (2)

and similarly for the other two components.

To understand the trade-off between the mean kinetic energy Ek (al-
ways positive) and the mean potential energy Ep (always negative) let us
assume a spherically symmetric wave function ψ(r) exists of approximate
radius a (see Fig. 1), where we need not know much about its exact shape,
and make crude estimates of how Ek and Ep will vary as a varies. The

mean kinetic energy is Ek = p2/2m and since p = 0, (the wave function is
centered at the nucleus), (∆p)2 = p2. But the uncertainty relation gives
for this wave function the approximate result:

∆px =≥ h̄/2a , (3)

because ∆x ≈ a.

Then p2 = 3h̄2/4a2.

¤Where does the “3” come from? Why is there “≈” instead of “≥”?

Let us replace the above expression with:

p2 = t3h̄2/4a2 , (4)
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where t is a positive number near unity which allows for the sloppy rea-
soning in the above arguments. Similarly, we write:

Ep = vkee
2Z/a , (5)

where v is a positive number near unity.

Then,
E = t3h̄2/8ma2 − vkee

2Z/a . (6)

Exercise: Draw Ek, Ep, E vs. a and show there must be a minimum
value of E at some value of a 6= 0, ∞.

To find the size, a, of the atom which gives a minimum in E, set
∂E/∂a = 0, and find that the value of a is:

a =
4v2

3t
a0 , (7)

where a0 = h̄2/(mkee
2Z), the Bohr value for the ground state energy of

the hydrogen atom. The quantity 4v2/3t is near unity, and so the size of
the hydrogen atom is determined largely by a compromise; low potential
energy would result from the electron being near the nucleus, but this
would require large kinetic energy.

3. The Schrödinger Equation

We draw a diagram of the the He atom. The classical expression for
the energy of this three point-charge system is:

E = Ek,1 + Ek,2 + Ep,1 + Ep,2 + Ep,12 . (8)
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We assume the (massive) nucleus is fixed at the center of mass. The
subscripts 1 and 2 refer to the 2 electrons “by name,” and the electron-
electron repulsive coulomb energy, is:

Ep,12 = kee
2/r12 . (9)

Magnetic energies should also be included because we have moving
charges, but the magnetic energies are very small (on the order of v2/c2

as large as the coulomb energies) so they are neglected.

We imagine the electrons are point objects with instantaneous posi-
tions and velocities, but these must remain unknown to us and we can only
find the wave function of the system, ψ(r1, r2) such that |ψ|2dV1 dV2 gives
the probability that electron 1 is in an element of volume dV1 at r1 and
electron 2 is in dV2 at r2. Actually, we must not suppose that we can iden-
tify which electron is “1” and which is “2” so |ψ|2 must remain unchanged
upon interchanging coordinates r1 and r2. This choice of wave function
implies that the two electrons have their spins anti-parallel. We obtain the
Schrödinger equation from Eq. (9) by the replacements px1 = −ih̄∂/∂x1,
etc. for y1 and z1 of electron 1 and similarly for electron 2. The re-
sulting Schrödinger equation looks deceptively simple. The term Ep,12,
containing 1/r12, however, is awkward to express in terms of r1 and r2
and obtaining the exact solution of this Schrödinger equation is far from
trivial.

Now ψ(~r1, ~r2) is a function of six coordinates (x1, y1, z1, x2, y2, z2)
and could be “drawn” in 7-dimensional space. Elsewhere it is shown2 that
the one-electron approximation is good and write ψ(~r1, ~r2) = ψ(~r1)ψ(~r2).
That is, each electron has its own wave function independent of the
other’s, and the wave function of the system is the product of these indi-
vidual wave functions.

Let us start to find the ψ’s by ignoring the pesky term, by setting
Ep,12 = 0, thereby reducing the problem to a trivial form:

E = E
(0)
1 + E

(0)
2 = (Ek,1 + Ep,1) + (Ek,2 + Ep,2) . (10)

That is, there are two non-interacting atoms superposed at the same
point in space. The solutions are then those of hydrogen-like atoms, with
energies En = −RZ2/n2. The ground state is:

ψ0(r1, r2) = ψ0(r1)ψ0(r2) , (11)

2See Introduction to Quantum Mechanics, L. Pauling and E. Bright Wilson, Mc-

Graw Hill, 1935. For access, see the “Book” section of this module’s Local Guide.
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where

ψ0(r) = N e−αr, E = −
α2

2
.

We will call this the “zero-th approximation.”

Exercise: Suppose there are two electrons confined to a one-dimensional
box of length a. Make a perspective drawing of ψ(x1, x2) = ψ(x1)ψ(x2)
against orthogonal axes x1 and x2 under each of the following cases:

1. Both electrons are in the ground state.

2. Both electrons are in the first excited state.

4. Approximate Wave Functions

Let us improve on the wave functions ψ0 = N e−αr. We expect that
they are too compact, because setting Ep,12 = 0 turned off a coulomb
repulsion that would have pushed each electron away from the other, and
thus away from the nucleus. We can attempt to account for this repulsion
by assuming that electron 1 moves as if electron 2 is permanently located
on the nucleus, so the net nuclear charge is Z = 1, not 2. That is,
electron 2 shields electron 1 from the full coulomb effect of the nuclear
charge. (In what follows, we will be trying to get a good wave function for
electron 1 by making crude assumptions about the average value of the
interaction potential, (Ep,12), set up by the charge distribution −e|ψ(r2)|

2

of electron 2. However, all arguments must be symmetrical when the
names “1” and “2” are interchanged. After getting a wave function for
electron 1, electron 2 is assumed to have an identical wave function, except
with opposite spin.

Again, the solution is trivial, of the form in Eq. (11) but with a new
value for a. We will call this the “full shielding” approximation.

Exercise: Compare the ionization energies (i.e. the energy required to
remove one more electron from the ion, as predicted by the above approx-
imation) for the cases Z = 1, 2 and 92.

It is easy to see that the “full shielding” approximation has overem-
phasized the shielding. The potential energy (Ep,12) can be approximated
as:

(Ep,12) =
kee

2σ

r1
, (12)
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where σ is the “shielding parameter” and for “full shielding” we chose σ =
1. This is actually a good approximation to the exact Ep,12 = kee

2/r12
when r1 À r2.

Elsewhere it is shown3 that the best value of σ is 5/16, by calculations
that include exact evaluations of the mean potential energy, (Ep,12). The
curve implied by Eq. (12), with = 5/16, has a widely different shape than
the curve it is supposed to be approximating, (Ep,12). However, deviations
for distances r1 À a don’t matter much since electron 1 is rarely out there.
Deviations for r1 ≤ a look at first glance to be serious, but they are not.

Exercise: Compare the ground state wave functions, ψ, for the particle
in a box, the hydrogen atom, and the cut-off harmonic oscillator. Locate
“funny points” in Ep (infinities, discontinuities in Ep and its derivatives)
and note the effect these have on ψ.

From the exercise, we see that wave functions, especially ground state
ones, react chiefly to the average shape and size of the potential, not to
its details. This is a general result for wave properties and can be seen as
another manifestation of the trade-off between minimizing the (positive)
kinetic energy and maximizing the (negative) potential energy.

3See Introduction to Quantum Mechanics, L. Pauling and E. Bright Wilson, Mc-

Graw Hill, 1935. For access, see the “Book” section of this module’s Local Guide.
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Suppose the potential has a deep “pot hole.” We have drawn a
“correct” ψ0 for a particle trapped in the potential well. Why can’t ψ be
the correct one, where ψ has “humped up” in the region of the pot hole
and thus lessened its average potential? In order to do so, it must curve
sharply in the region, and thus develop a large d2ψ/dx2 or kinetic energy.
The price is too high to pay. Returning to the approximation of Eq. (12)
for (Ep,12), we see the shape from Eq. (12) is not very important, but that

its average value should equal that of (Ep,12) in the region r1 ≤ a, which
occurs for σ = 5/16.

Exercise: Complete the analysis of ionization energies you started by
adding the case σ = 5/16 to those of σ = 0 and σ = 1.
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 247.” Do not ask for them by book title.

The book listed in this module’s ID Sheet is on reserve for you in the
Physics-Astronomy Library, Room 230 in the Physics-Astronomy Build-
ing. Tell the person at the desk that you want a book that is on reserve
for CBI (a BOOK, not a reading). Then tell the person the name of the
book you want.
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