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THE UNCERTAINTY RELATIONS:

DESCRIPTION, APPLICATIONS

by

Peter Signell

1. Introduction

1a. Waves Imply Uncertainties. The wave nature of a particle car-
ries the implication that our knowledge of its momentum and position
are somewhat uncertain (where is “the position” of a wave?). Utilizing
the Schrödinger equation, we can prove Heisenberg’s uncertainty princi-
ple: that the product of the position and momentum uncertainties has
a universal minimum value.1 Thus as a very accurate measurement of a
particle’s position dramatically decreases our uncertainty in its position,
then the measurement simultaneously and uncontrollably increases the
minimum possible uncertainty in the particle’s momentum.

1b. Personal Reactions to Minimum Uncertainty. The relation-
ship between position and momentum uncertainties is rather unique in
physics. As one lower limit goes down the other goes up, and there is
nothing whatever we can do about it. Some physicists dislike this effect;
they feel that there should be no fundamental barrier to knowledge. Other
physicists embrace the effect; they feel that there should be an inherent
limit to knowledge so that our task is not endless.

1c. Experimental Evidence. No violation of the uncertainty prin-
ciple has ever been found. Noting that all evidence had come from the
physical universe, at one time it was postulated that perhaps the most
basic life process, the replication of DNA, might violate the uncertainty
principle. However, even for this process it was found that the principle
was obeyed, albeit just barely.

2. The Two Uncertainty Relations

2a. Position-Momentum Relation. The position-momentum un-
certainty relation, which can be precisely derived from the Schrödinger
equation, states that if ∆x is the uncertainty in the x-coordinate of the
position of an object and ∆px is the uncertainty in the x-component of

1See “Wave Functions, Mean Values and Probability” (MISN-0-243).
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Figure 1. The prob-
ability density of a hy-
pothetical particle, il-
lustrating position un-
certainty.

the momentum of that object, then:

∆x∆px ≥ h̄/2 . (1)

This is called the Heisenberg uncertainty relation.2 Here is how you should
read the equation: “delta x times delta p sub x is greater than or equal
to h bar over 2.” The quantity “h bar” is defined as “h divided by two
pi”: h̄ = h/2π.

2b. Energy-Time Relation. We can also show that for many situa-
tions

∆E∆t ≈ h̄ , (2)

which is sometimes referred to as an uncertainty relation for energy and
time. It has recently been found that there does not appear to be any
energy/time relation analogous to Eq. (1). Instead, we have this imprecise
statement. Equation (2) is often a good approximation for processes on
the scale of atoms.

2c. Definition of Uncertainty. The uncertainty of a measured quan-
tity is defined as the root-mean-square (RMS) deviation from its mean
value. Using the wave function and the associated probability density
that describe a particular object, the uncertainty in the position of an ob-
ject, ∆x, can be shown to be half the “width” of the probability density
function measured at half the “height” of the density function (this “di-
mension” is called the “half width at half height,” or HWHH for short).
Thus the “full width at half height” (FWHH) of the probability density
is twice ∆x. As an example, an object described by the probability den-
sity shown in Fig. 1 has a average position of 2.5, and an uncertainty in
position of 0.5. For any other measured quantity, the probability density

2Eq. (1), above, is the precise general statement of the position-momentum un-
certainty relation. Elementary textbooks sometimes state a relation which is only
approximate and only developed for a particular case.
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Figure 2. Photons diffracted by a
slit have uncertainties ∆x = W/2
and ∆px ≈ p sin θ ≈ h/W .

is used to compute the mean value and RMS deviation of the variable.
Help: [S-2] Thus given a complete mathematical description of the wave
function of an object, we can compute ∆x and ∆px precisely. However,
interesting and useful numbers can be obtained through rough estimation
(e.g. when one knows that the particle has gone through a slit of width
W , taking ∆x ≈W/2).

3. The Position-Momentum Relation

3a. Photons Passing Through a Slit. As an illustration of the
position-momentum uncertainty relation, consider photons incident upon
a narrow slit. Let us estimate the uncertainty in the momentum and
position of the photons after they have passed through the slit. If the
width of the slit is W (see Fig. 2) and the wavelength of the incident light
is λ, the first minima of the Fraunhofer diffraction pattern occurs at the
angle θ where3

sin θ =
λ

W
. (3)

There is a good probability that a photon will be scattered into this
range, since it is most likely that a photon will end up within the central
maximum of the diffraction pattern. The uncertainty in its x-component

3See “Fraunhofer Diffraction” (MISN-0-235).
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Figure 3. A wave packet is formed by opening and closing
a light shutter.

of momentum after it has passed through the slit is thus (roughly)

∆px ≈ p sin θ =
h

λ

λ

W
=

h

W
, (4)

where p = h/λ is deBroglie’s relation for the wavelength of a particle.4

Since the uncertainty in the x-coordinate of the position of a photon that
has just passed through the slit is ∆x ≈ W/2, and its uncertainty in px

is h/W , then

∆px∆x ≈
h

2
. (5)

Notice that this equation differs from Eq. (1) by a factor of 2π because
we have not used the precise definition of uncertainty to calculate ∆px.

3b. Light Passing Through a Shutter. A more revealing illustra-
tion of the relationship of the wave-particle duality of light to the un-
certainty principle involves passing an infinitely long wave train through
a light shutter. The shutter can be opened and closed to allow a short
segment of the wave train, called a “wave packet,” to pass through it (see
Fig. 3). This wave packet may be used to represent a photon. In order to
obtain a wave packet of length ∆x, it is necessary to include a range of
wave numbers ∆k of the order

∆k ≈
1

∆x
. (6)

But since p = h̄k, this implies also a range of momenta ∆px = h̄∆k and
so

∆px∆x ≈ h̄ . (7)

4See “DeBroglie Waves” (MISN-0-240).
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Figure 4. “Observing” an electron with a
Heisenberg microscope.

It can be seen that in order to shorten the wave packet (and more precisely
determine the position of the photon), ∆k (and consequently ∆px) must
increase so that the product remains constant. Thus the uncertainty
principle is intimately related to the wave-particle nature of matter and
light.

3c. The Heisenberg Microscope. The Heisenberg microscope is a
“gedanken,” or thought, experiment which illustrates that the uncertainty
principle can be applied to particles other than photons. Imagine that
an electron is observed through a microscope where light is incident from
the left, as shown in Fig. 4. If the electron is assumed to be initially
stationary, its momentum is thus known exactly and we can then try
to determine its position simultaneously. To observe where the electron
is, one of the incident photons must strike the electron and be scattered
into the microscope objective. However, when the photon bounces off
the electron, it imparts momentum to the electron. Because the photon
can enter the finite aperture of the microscope objective anywhere across
its width, the x-component of the photon’s momentum is not completely
known, and the amount of momentum imparted to the electron is un-
certain. The uncertainty in the x-component momentum of the electron
after being struck is thus the same as the uncertainty in the x-component
of the photon:

∆px = p sin θ =
h

λ
sin θ . (8)
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The resolving power, and thus the accuracy ∆x with which the position
of the electron can be determined, is

∆x =
λ

sin θ
, (9)

where λ is the wavelength of the incident light.5 Once again, the relation-
ship between the uncertainties in position and momentum is found to be
approximately

∆px∆x ≈ h . (10)

4. Lifetimes of Energy States

4a. Interpretation of ∆E and ∆t. The energy-time uncertainty
relation has a physical interpretation different from that of the position-
momentum relation. In the latter, position and momentum have sym-
metrical roles; they can both be measured at a given time t. In the
energy-time relation, however, ∆E and ∆t play fundamentally different
roles. ∆E is the uncertainty in a dynamical variable E, while ∆t is the
time interval during which the energy is uncertain by that amount. Thus,
the situation is different because the energy is a function of time.

4b. Lifetimes and Energy Level Widths. An important applica-
tion of ∆E∆t ≈ h̄ is the lifetime-energy level width relation for radioactive
systems. A “radioactive” system is one which is not stable, such as the
excited state of an atom, a radioactive nucleus, or an unstable elementary
particle. Because the system is not stable, it does not correspond just to
one energy, but to a spread of energies ∆E, which is usually called the
“level width.” The average length of time a system remains in a certain
state is known as the “lifetime” τ of the state. The lifetime τ is assumed
to be of the same order of magnitude as ∆t (its uncertainty). Conse-
quently, the relationship between the lifetime and energy level width of a
certain state is

τ∆E ≈ h̄ . (11)

4c. Example: Excited States of an Atom. The lifetime-level width
relationship can be applied to an excited state of an atom. An electron
in an excited energy state will, after a certain length of time, undergo a
spontaneous transition to another state of less energy. There is no way to

5See “Fraunhofer Diffraction” (MISN-0-235).
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predict with certainty when the transition will occur. However we may
predict the average lifetime of the excited state. Equation (11) tells us
that the longer the lifetime, the smaller the uncertainty in the energy of
the state. In a ground state, whose lifetime is infinite because it cannot
undergo a spontaneous transition to a lower energy level, τ = ∞. This
gives ∆E = 0, so the energies of ground states can be measured with-
out any inherent uncertainty. The theory commonly used in theoretical
chemistry and atomic and molecular physics predicts a single value also
for each excited state of an atom or molecule. As can be seen from the
above analysis, this cannot be true.
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Glossary

• level width: the spread of energies associated with an energy level
of an excited state of an atom, molecule or nucleus.

• lifetime: the average length of time a radioactive system remains in
a given state.

• radioactive: an adjective which describes a system which is unstable,
and decays to another state by the spontaneous emission of radiation.

• uncertainty: the root-mean-square deviation of a quantity from its
mean value.

• wave packet: a linear superposition of single-frequency, infinitely
long wave trains, that has a finite length. The length of the wave packet
depends inversely on the range of wavelengths of the single frequency
waves that are included in the linear superposition.
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PROBLEM SUPPLEMENT

h = 6.63× 10−34 J s= 4.14× 10−15 eV s

c = 3.0× 108 m/s

h̄c = hc/2π = 197.3× 10−9 eVm

mass of an electron: me = 9.11× 10−31 kg= 0.511MeV/c2

mass of a proton: mp = 1.67× 10−27 kg= 938MeV/c2

1 mile = 1.609 kilometers

1. A policeman tickets a driver for speeding, using a radar device to
determine that the speed of the car was 70.0mph±2.5mph. Given that
the mass of the car is 8.1× 102 kg, calculate the minimum uncertainty
in the position of the car along its direction of travel. Help: [S-5]

2. In the ground state of a hydrogen atom, the electron has a characteris-
tic probability density which describes the probability of locating the
electron within a given radial region from the nucleus. If the FWHH
of the probability density is approximately 0.05 nm, what is the mini-
mum uncertainty in the radial component of the electron’s momentum?
Help: [S-6]

3. An early theory of the atomic nucleus held that protons and electrons
existed in the nucleus in sufficient numbers to account for the total
mass and charge of the nucleus. Since the nucleus is roughly 10−15 m
in diameter, the positions of the protons and electrons would be known
to within at least 10−15 m for any of the three Cartesian coordinates
of position.

a. Calculate the uncertainty in any Cartesian component of the mo-
mentum of an electron and of a proton in the nucleus. Help: [S-7]

b. Assuming that the momentum components are greater than or
roughly comparable to their uncertainties, i.e. px ≥ ∆px, etc., cal-
culate the minimum kinetic energy of a proton and of an electron
confined to the nucleus. Help: [S-4]

4. Calculate the percent uncertainty, ∆ν/ν, in the frequency of the emit-
ted photon when a hydrogen atom makes a transition from the fourth

12
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excited state to the ground state, assuming that the lifetime of the
fourth excited state is τ = 2.75× 10−9 s. Help: [S-3]

5. The “linewidth” of a laser pulse is defined as the uncertainty ∆λ in
the wavelength of the laser “spectral line.”

a. Relate the linewidth of the spectral line to the “bandwidth,” ∆ν,
the uncertainty in the frequency of the line. Help: [S-1]

b. If the time duration of the laser pulse is 1.00 nanosecond (10−9 s),
use the energy-time uncertainty relation to estimate the linewidth
of a 603 nm laser line.

Brief Answers:

1. ∆x ≥ 5.8× 10−38 m Help: [S-5]

2. ∆pr ≥ 2.1× 10−24 kgm/s Help: [S-6]

3. a. for both: ∆px ≈ ∆py ≈ ∆pz ≥ 2.0× 108 eV/c Help: [S-7]

b. For the electron: Ek ≥ 117× 109 eV = 117GeV Help: [S-8]

For the proton: Ek ≥ 6.4× 107 eV = 64MeV Help: [S-9]

4. ∆ν/ν = 1.84× 10−8 = 1.84× 10−6% Help: [S-10]

5. a. ∆ν ≈ (c∆λ)/λ2 Help: [S-1]

b. ∆λ ≈ 1.93× 10−13 m = 0.193 pm
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, Problem 5)

ν =
c

λ

ν +∆ν =
c

λ+∆λ

∆ν =
c

λ+∆λ
−

c

λ
= −

c∆λ

(λ+∆λ)λ
' −

c∆λ

λ2

Hence, for a small spread of frequencies, that spread is:

|∆ν| = c∆λ/λ2.

This can also be obtained by differentiation.

S-2 (from TX-2c)

A function’s root-mean-square deviation from its mean value is called its
RMS deviation and is widely used in modern technology. For a function
f(x) it is defined by:

∆f(x) =

√

[

f(x)− f(x)
]2

where the overhead bar (an “overline”) indicates the “mean” (average)
value of the overlined quantity. To simplify the above expression we
expand the square and take its average, noting that the average of f(x)
is just itself (since it is already a number). Then:

∆f(x) =

√

f2(x)− f(x)
2

This quantity is a measure of the width of the distribution function that
describes the frequency of occurrence of a particular value of f(x). Thus
a quantity f(x) with a distribution function having a broad peak will
have a larger RMS value than one with a narrower peak.

14
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S-3 (from PS-Problem 4)

The lifetime-energy level width relationship states that

∆E τ ' h̄ =⇒ ∆E '
h̄

τ
.

The uncertainty in energy only applies to excited states, because the
ground state has an infinite lifetime. The energy of the photon produced
when an atomic system makes a transition from an excited energy state
to the ground state state is:

Ephoton = h ν = En −E1,

so the frequency ν will be uncertain by an amount ∆E/h, where ∆E
is the level width of the excited state. For one-electron atomic systems,
En = −E0/n

2, so for a transition from the fourth excited state to the
ground state:

hν = E5 − E1 = −E0/25 + E0 = (24/25)E0,

where R0 = 13.6 eV for hydrogen, so:

∆ν

ν
=

(∆E/h)

ν
=

(

∆E

hν

)

.

S-4 (from PS, Problem 3b)

The kinetic energy is given by Ek = p2/2m where m is the mass of the
particle and p2 = p2

x + p2
y + p2

z.

S-5 (from PS, Problem 1)

∆x ≥
(6.63× 10−34 J s)(3600 s/hr)( kgm2 s−2/ J)

(2)(2π)(8.1× 102 kg)(2.5mi/hr)(1.609× 103 m/mi)

= 5.8× 10−38 m
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S-6 (from PS, Problem 2)

∆pr ≥
(6.63× 10−34 J s)( kgm2 s−2/J)

(2)(2π)(0.025× 10−9 m)
= 2.1× 10−24 kgm/s

S-7 (from PS, Problem 3a)

∆px ≥
197.3× 10−9 eVm/c

(2)(1/2)(10−15 m)
= 2.0× 108 eV/c

S-8 (from PS, Problem 3b)

∆Ek ≥
(3)(2.0× 108 eV/c)2

(2)(0.511× 106 eV/c2)
= 117× 109 eV

S-9 (from PS, Problem 3b)

∆Ek ≥
(3)(2.0× 108 eV/c)2

(2)(0.938× 109 eV/c2)
= 6.4× 107 eV

S-10 (from PS, Problem 4)

from [S-3]:

4.14× 10−15 eV s

(2π)(24/25)(13.6 eV)(2.75× 10−9)
= 1.84× 10−8

16
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MODEL EXAM

h̄c = 197.3× 10−9 eVm

c = 3.0× 108 m/s

1. See Output Skills K1-K3, this module’s ID Sheet. The exam may
include one or more of these skills, or none.

2. Suppose a state trooper measures the speed of a car and finds it to
be (70.0 ± 2.5)mph which is (31.3 ± 1.1)m/s. Find the minimum
uncertainty with which the trooper could simultaneously know the
position of the car. Assume the car’s weight to be 1790 lb, which
means it has a mass of 8.1× 102 kg or 4.55× 1038 eV/c2.

3. The lifetime of the fourth excited state of the hydrogen atom is
2.75 × 10−9 s. Estimate the percentage spread in the frequencies of
photons emitted when such atoms make a spontaneous transition from
the first excited state to the ground state. The ground state energy of
a hydrogen atom is E0 = −13.6 eV.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, Problem 1.

3. See this module’s Problem Supplement, Problem 4.
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