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STANDING WAVES IN SHEETS OF MATERIAL

by

Peter Signell and William Lane
Michigan State University

1. Introduction

Standing waves often occur in one-dimensional systems such as vio-
lin strings and organ pipes, but they also can occur in two-dimensional
systems such as drumheads, cymbals, bridges and aircraft wings. In these
one- and two-dimensional systems each string, pipe, or sheet of material
has its own resonant frequencies that depend on the physical shape of the
vibrating object, on the material of which it is made, and on its bound-
ary conditions (how it is fastened or not fastened at its ends or edges).
The vibrations are desirable in instruments but are extremely undesirable
in many engineering structures where they cause fatigue of material and
subsequent failure.

The methods used to calculate resonant frequencies are much the
same in one- and two-dimensional systems. The circular objects men-
tioned above, the drumhead and cymbal, are well-known examples of
vibrating sheets of material and their resonant frequencies can be readily
calculated. However, in this unit we use rectangular instead of circular
examples, so that in direct analogy to the one-dimensional case we can
write the standing waves as sums of traveling sine waves instead of the
less familiar Bessel waves appropriate to a disc-like surface.

2. Standing Waves

2a. Qualitative: Linear Waves. If one sets up a traveling wave in a
one-dimensional stretched string, the wave reflects from the ends and thus
one soon has traveling waves going in both directions. This means that if
there is a wave traveling along a string, there is soon another wave going
in the opposite direction. Under the proper conditions, a standing wave
results from the interference of two such oppositely-traveling waves.1

2b. Qualitative: Sheet Waves. Suppose we set up a two-
dimensional traveling wave in a sheet of material, the wave being headed

1See “Standing Waves in One Dimension” (MISN-0-232).
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(+x,+y)(-x,+y)

(+x,-y)(-x,-y)

Figure 1. Defining directions used in the text.

at an angle toward one of the sheet’s sides. The wave reflects in turn off
each of the sheet’s four sides much as billiard balls reflect from billiard
table edges. We will wind up with two waves traveling in opposite di-
rections at an angle across the sheet, and two other waves traveling in
opposite directions and at a symmetrically reversed angle with respect to
the first pair. Four such waves can add to produce standing waves in the
sheet of material.

2c. Mathematical: Linear Waves. A one-dimensional z-
displacement sine wave traveling in the positive x direction can be written
as:

z = A sin(ωt− kx) .

A similar wave traveling in the negative x-direction is then written:2

z = A sin(ωt+ kx) .

2d. Mathematical: Sheet Waves. In two dimensions, a position
on a wave is designated by the vector ~r. Similarly, the wave number
becomes a “wave vector” ~k in the direction of the wave’s propagation.
The equation for a single sine wave with frequency ω and wave vector ~k
is:

z = A sin(ωt− ~k · ~r) .
We can use this notation to represent the sum of waves propagating in
all four directions in an x-y-plane sheet: in the (+x,+y) direction, the
(−x,−y) direction, the (+x,−y) direction, and the (−x,+y) direction (See
Fig. 1).

2e. The Standing Wave. A standing wave in a two-dimensional sheet
of material must, in general, be a combination of traveling waves in four
directions in order to take into account reflections off all four sides of

2See “The Wave Equation and It’s Solutions” (MISN-0-201).
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the sheet. Then any z-displacement standing wave in a sheet can be
represented by:

z(x, y, t) = A1 sin(ωt− kxx− kyy) +A2 sin(ωt+ kxx+ kyy)

+A3 sin(ωt− kxx+ kyy) +A4 sin(ωt+ kxx− kyy) ,
(1)

where the A’s, k’s and ω are determined by the dimensions of the sheet
and characteristics of the disturbance.

3. Fixing the Resonant Vibrations

3a. Introduction. Just as for the one-dimensional standing wave,
we can calculate the relationships among a z-displacement’s component
amplitudes and then calculate its resonant vibrations. We do this by
applying the appropriate boundary conditions—in this case by requiring
that z = 0 on all four sides where the material is fastened, hence is unable
to undergo displacement. For convenience we will orient our coordinate
axes so that the sheet edges are at x = 0 and x = a, and at y = 0 and
y = b (see Fig. 2).

3b. The X- and Y -Axis Boundaries. Starting first with the edge
along the y-axis, we require that z = 0 (no displacement) at all points
with x = 0. Setting z = 0 and x = 0 in Eq. (1) we obtain:

0 = (A1 +A4) sin(ωt− kyy) + (A2 +A3) sin(ωt+ kyy) .

This must hold for any value of y and any value of t, so the terms with
different functions of y and t must vanish separately: A1 = −A4 and
A2 = −A3. We use these equalities to replace A3 and A4 by A1 and
A2. Taking next the edge along the x-axis, we require that z = 0 at
all points along the edge along y = 0. Making this substitution and
collecting similar functions of x and t, we deduce that: A1 = A2 = A.

a

b
x

y

0
0

Figure 2. Description of the sheet used as a text
illustration.
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Our expression for z, Eq. (1), is then:

z =A[sin(ωt− kxx− kyy) + sin(ωt+ kxx+ kyy)

− sin(ωt− kxx+ kyy)− sin(ωt+ kxx− kyy)] .
(2)

3c. The Non-Axis Boundaries. A third edge is parallel to the x-axis
at y = b, and z is zero there also:

0 =A sin[(ωt− kxx)− kyb] + sin[(ωt+ kxx) + kyb]

− sin[(ωt− kxx) + kyb]− sin[(ωt+ kxx)− kyb] .

Again this must hold for all x and t and so again the terms that contain
identical functions of x and t must cancel each other:

sin[(ωt− kxx)− kyb]− sin[(ωt− kxx) + kyb] = 0 ,

and
sin[(ωt+ kxx) + kyb]− sin[(ωt+ kxx)− kyb] = 0 .

Now two sine functions will be everywhere equal if and only if their ar-
guments are the same except for an integer multiple of 2π. That is,
sin c = sin d if and only if: c + 2πn = d where n is any integer. In our
case,

sin[(ωt− kxx)− kyb] = sin[(ωt− kxx) + kyb] ,

if and only if:

(ωt− kxx)− kyb+ 2πny = (ωt− kxx) + ky ,

where ny is any integer. The subscript “y” indicates that the integer is
associated with boundary conditions in the y variable. Solving the above
equation we find:

ky = nyπ/b . (3)

For all such values of ky the second pair of sine functions cancels also,
and thus, for those particular values of ky, we have that z = 0 at y = b
(as required). Just as for standing waves in one dimension, we have found
that the y component of the wave vector can have only certain discrete
values as long as the sheet of material is kept from vibrating along the
edges at y = 0 and y = b.

The fourth edge is parallel to the y-axis at x = a and since that is
clamped also, a calculation for x = a similar to the one for y = b yields
the information that kx can have only certain discrete values too:

8
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kx = nxπ/a; nx ≡ any integer . (4)

Thus the boundary conditions allow only a discrete set of values for the
propagation vector ~k:

~k = (nxπ/a)x̂+ (nyπ/b)ŷ ,

where nx and ny are restricted to being integers.

4. Nodal Lines, Pictures

4a. Overview. For standing waves on a stretched string one can pic-
ture the string vibrating in different ways at different resonant frequencies.
The positions of nodes provide a convenient description. For example, at
the fundamental frequency the wave has nodes only at the two ends of
the string and so the “wavelength” is twice the string length. At the first
harmonic there is an additional node in the middle of the string and so the
“wavelength” equals the string length. For standing waves in a sheet of
material one can also picture the vibrations at various resonant frequen-
cies but now we must specify two numbers for each resonant frequency,
nx and ny. If we know nx and ny, we can calculate the positions of the
nodal lines, which are parallel to the axes, and those positions enables us
to picture the vibrations.

4b. Example: ny = 2. To illustrate the calculation of nodal lines, we
first use the case ny = 2 as an example. Putting this into Eq. (2), Eq. (1)
becomes:

z = A

{

sin

[

(ωt− kxx)−
2π

b
y

]

+ sin

[

(ωt+ kxx) +
2π

b
y

]

− sin
[

(ωt− kxx) +
2π

b
y

]

− sin
[

(ωt+ kxx)−
2π

b
y

]}

.

A nodal line is where z = 0 and hence it is at a y value, ynl, where:

(ωt− kxx)−
2π

b
ynl + 2πn = (ωt− kxx) +

2π

b
ynl .

This means that:
ynl = nb/2 .

Here n is any integer but of course y can not exceed b, the length of the
sheet material. Then z = 0 for y = 0, b/2, and b. We already knew that
z = 0 at y = 0 and b but now we see that for ny = 2 there is an additional
nodal line at y = b/2.
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a

b

Figure 3. t = P/4,
mode = (1,2).

+

-

Figure 4.
t = 3P/4, mode =
(1,2).

4c. Example: ny = 2 and nx = 1. Given that ny = 2 produces a
nodal line at y = b/2, we can set up a complete example by adding the
condition nx = 1. To find out where the nodes are in the x-variable,
one does a calculation similar to that for the y-variable looking at z as a
function of x and putting in kx = π/a. This gives z = 0 at x = 0 and a
but at no other values of x; that is, for nx = 1, the only nodal lines are at
the edges of the material where the sheet is permanently fixed. To picture
what the vibration looks like, we can draw lines on a plane to represent
the nodes, and then we know that in between are the antinodes which
vibrate up and down as a function of time. For the mode of oscillation
with nx = 1 and ny = 2 the appearance of the sheet is as in Figs. 3 and 4
at two fractions of the period of oscillation, P . You should think of those
two figures as being two frames in a sequence of five frames: (i) at t = 0
the sheet is flat; (ii) at t = P/4 the sheet is as shown in Fig. 3; (iii) at
t = P/2 the sheet is again flat; (iv) at t = 3P/4 the sheet is as shown in
Fig. 4; (v) at t = P the sheet is again flat.3

4d. Other Examples. Figures 5 and 6 show a square sheet at two
times for the (nx, ny) = (2, 2) mode of vibration, while Figs. 7 and 8 show
the same times for the (nx, ny) = (1, 3) mode.

5. Frequencies

5a. Overview. In contrast to a one-dimensional system, a material
sheet’s sequence of resonant frequencies does not in general form a har-

3For some beautiful photographs illustrating these modes, see Vibrations and

Waves, A. P. French, W. W. Norton & Co., Inc., NY (1971), p. 185. See if you can
deduce which normal modes are shown there. For availability, see this module’s Local

Guide.
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+

+ -

-

Figure 5.
t = P/4, mode =
(2,2).

+

+-

-

Figure 6.
t = 3P/4, mode =
(2,2).

monic series. That is, the higher resonant frequencies are not generally
integral multiples of the fundamental frequency. To calculate the fre-
quency of a two-dimensional wave whose wave vector is known, one must
first relate the wave vector to the velocity and then the velocity to the
frequency.

5b. Frequency for (nx,ny) and Velocity. Interesting properties of
standing waves can be deduced by expressing frequency in terms of veloc-
ity. Of course a standing wave does not have a velocity, but we can easily
determine the velocities of the four traveling waves which make up any
particular standing wave in a sheet. For a rectangular sheet of material
and a standing wave with wave vector (πnx/a,πny/b), the wave number
of each of the four component traveling waves is:

k = π
√

(nx/a)2 + (ny/b)2 .

+

+

-

Figure 7.
t = P/4, mode =
(1,3).

+

-

-

Figure 8.
t = 3P/4, mode =
(1,3).
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Recalling that wave number is just the inverse of wavelength times 2π we
can relate a component wave’s frequency ν to its velocity v:

ν = (v/2)
√

(nx/a)2 + (ny/b)2 .

The fundamental (lowest) frequency ν0 is obtained when nx = ny = 1.
Higher values of nx and ny give higher frequencies. Calculate some of
them: you will find that sometimes you get an integral multiple of ν0 but
not in general.

5c. Fundamental and Overtones. To find the fundamental and the
first few overtones, substitute various small integers for nx and ny and
calculate the corresponding frequencies. Arrange the frequencies in order
of increasing numerical value. The lowest is the fundamental. The next
highest is the first overtone, the next highest is the second overtone, etc.
Some people prefer to do the calculations on a computer, plugging in
various small integers for nx and ny.

5c. General Method for Getting the Velocity. The velocity of a
wave depends upon the physical properties of the wave’s medium and not
on the shape or frequency of the wave. Just as for the one dimensional
wave, the way to calculate the velocity of a two dimensional wave is to
identify the appropriate restoring force and then apply Newton’s second
law to a small piece of the material to obtain a wave equation.4 The wave
equation now will be two-dimensional, but for an isotropic medium the
velocity will be the same in all directions. Once one has the correct form
of the wave equation, the velocity is easily identified by comparison to
the general form of the wave equation for a sheet in the x-y plane and
displacement in the z-direction:

v2

(

∂2z

∂x2
+

∂2z

∂y2

)

=
∂2z

∂t2

5d. Some Velocities. For a string stretched with tension T and having
a mass per unit length ρ`:

v =
√

T/ρ` .

For a pliable sheet stretched with tension per unit length T` and having a
mass per unit area ρA, the stretched string derivation can be modified to

4Waves are created because, when the medium is disturbed, the restoring force acts
to return the medium to its equilibrium position. The mass of the medium causes
it to “overshoot” the equilibrium position while the strain in the medium causes the
disturbance to spread, to “propagate.”

12
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apply Newton’s second law to an element of area dA = dx dy. Adding the
x- and y-direction forces on the element, one obtains the two dimensional
wave equation with:

v =
√

T`/ρA .

For a stiff sheet with shear modulus G and mass per unit volume ρv, a
similar derivation gives:

v =
√

G/ρv .

Such formulas can be found in handbooks, along with values for ρ and G
for various materials.
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LOCAL GUIDE

The book listed in this module’s ID Sheet is on reserve for you in the
Physics-Astronomy Library, Room 230 in the Physics-Astronomy Build-
ing. Tell the person at the desk that you want a book that is on reserve
for CBI (a BOOK, not a reading). Then tell the person the name of the
book you want.
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PROBLEM SUPPLEMENT

Note: Problems 9-11 also occur in this module’s Model Exam.

1. Suppose a sheet of material is disturbed in such a way as to set up two
traveling sine waves, one going in the (+x,+y) direction and one in
the (+x,−y) direction. Their amplitudes and wavelengths are equal
and the wave displacement values at the origin are zero at time zero.
Before reflection from the boundary takes place, determine these prop-
erties of the resultant wave:

a. Its mathematical form.

b. Its direction.

c. Its wave number and wavelength in terms of the wave number and
wavelength of its components.

d. Its nodal lines in terms of the wavelength of its components.

2. Suppose you have a square drumhead of side a and traveling wave
velocity v. What is its fundamental frequency? What are the next six
higher frequencies, expressed in units of the fundamental frequency?

3. Given that the equation
[

∂2

∂x2
+

∂2

∂y2
− ρ

G

∂2

∂t2

]

z(x, y, t) = 0

is obeyed for transverse waves in a particular metallic sheet on the
surface of an airplane wing. If the above sheet is struck a sharp
transverse blow, with what speed will transverse waves travel away
from the point of impact? If you knew the composition of the metal,
where would you expect to find values for G and ρ?

4. Given that the metallic sheet is rectangular and rigidly fixed along its
edges but is otherwise unsupported. Show that the function

z =A[sin(ωt− kxx− kyy) + sin(ωt+ kxx+ kyy)

− sin(ωt− kxx+ kyy)− sin(ωt+ kxx− kyy)] .

not only satisfies the equation in Problem (1) (BE BRIEF) but also
gives a correct description of the non-motion of those two edges of the
sheet which are along the lines x = 0 and y = 0.

15
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5. Derive the resonant frequencies by forcing z to give a correct descrip-
tion of the non-motion of the other two sheet edges, which are located
along the lines x = −b and y = −a, b 6= a. The answer for b = a is:

ν(nx, ny) = (v/2a)
√

n2
x + n2

y

where nx, ny are integers.

6. From Problems (4) and (5), derive the nodal lines for the resonance
nx = 2, ny = 3, b 6= a.

7. Sketch the sheet at t = P/4, indicating the peaks, valleys, and nodal
lines, for the case in Problem (6). If you wish to check your sketch,
you can solve for z(−b/4, y, P/4) and ξ(−3b/4, y, P/4). You may wish
to use:

sin(A±B) = sinA cosB ± cosA sinB .

8. Suppose it takes N flexures for the sheet to fatigue sufficiently to fail.
If there is a sizable component of the sheet’s fundamental frequency
in the exhaust noise, find the amount of flight time to failure.

9. Given a pliable rectangular sheet clamped on its entire perimeter, with
the dimensions given below, under a surface tension T` of 13.7N/m
and with mass per unit area of 1.92 kg/m2, calculate the five lowest
normal mode frequencies.

5.0 cm

2
.5

c
m

10. For the above system of problem 3, determine the location of the
nodal lines of the five normal modes and sketch the appearance of the
sheet for each normal mode, identifying the peaks and valleys at one
extremum of motion.

11. Assuming the 5.0 cm dimension to be the x-direction and that normal
modes are labeled by the ordered pair (nx,ny), calculate the resonant
frequency of the (7,9) mode.

16
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Brief Answers:

1. a. z = A[sin(ωt− kx− ky) + sin(ωt− kx+ ky)]

b. Parallel to the x-axis.

c. kresultant =
√
2k; λresultant = λ

√
2

d. At y = nλ/2, where n is any integer.

2. ν0 = (v/2a)
√
2; ν1/ν0 . . . ν6/ν0 =

√
2.5,

√
4.5,

√
6.5,

√
8.5,

√
9

3. v =
√

G/ρ. Handbook of Chemistry and Physics, for example.

4. For any of the four terms, ∂2/∂x2(term) = (−k2
x)(term), etc.

So: (sum of operators) × (term)= (−k2
x − k2

y + ρω2/G)× (term)

but: (−k2
x − k2

y + ρω2/G) = (−k2 + k2) = 0. Check.

The two substitutions and cancellations can be seen by inspection.

5. ν = (v/2)
√

(nx/b)2 + (ny/a)2

6. x = −b/2; y = −a/3; y = −2a/3

7. z(−b/4, y, P/4) = 4A sin(3πy/a),

z(−3b/4, y, P/4) = −4A sin(3πy/a)

8. T =
N

2ν(nx = 1, ny = 1)
.

9. Fundamental: ν0 = 59.7Hz

First Overtone: ν1 = 75.5Hz

Second Overtone: ν2 = 96.3Hz

Third Overtone: ν3 = 110.1Hz

Fourth Overtone: ν4 = 119.5Hz

17
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10.

+

+

++

+
+

+

+ +

-

-

-

-

-

- -

11. ν(7, 9) = 515.9Hz

18



MISN-0-233 ME-1

MODEL EXAM

1. See Output Skills K1-K3.

2. Given a pliable rectangular sheet clamped on its entire perimeter, with
the dimensions given below, under a surface tension T` of 13.7N/m and
with mass per unit area of 1.92 kg/m2, calculate the five lowest normal
mode frequencies.

5.0 cm

2
.5

c
m

3. For the above system of problem 2, determine the location of the nodal
lines of the five normal modes and sketch the appearance of the sheet
for each normal mode, identifying the peaks and valleys at one ex-
tremum of motion.

4. Assuming the 5.0 cm dimension to be the x-direction and that normal
modes are labeled by the ordered pair (nx,ny), calculate the resonant
frequency of the (7,9) mode.

Brief Answers:

1. See this module’s text.

2. See Problem 9 in this module’s Problem Supplement.

3. See Problem 10 in this module’s Problem Supplement.

4. See Problem 11 in this module’s Problem Supplement.

19 20


