
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-230

INTERFERENCE FROM

TWO SYNCHRONIZED WAVE SOURCES

angular view

cross-section

opaque

sheet

opaque

sheet

screen

screen

light waves

light waves

d

Lslits

x

1

INTERFERENCE FROM TWO SYNCHRONIZED WAVE SOURCES

by

Peter Signell and William C. Lane, Michigan State University

1. Introduction
a. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
b. Synchronized Wave Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
c. Source-to-Point Distances are the Key . . . . . . . . . . . . . . . . . . . 1
d. Constructive interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
e. Destructive Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
f. Goals of This Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Mathematical Description
a. The Phase Difference: Description . . . . . . . . . . . . . . . . . . . . . . . 4
b. The Phase Difference: Calculation . . . . . . . . . . . . . . . . . . . . . . . 4
c. Derivation of the Phase Difference . . . . . . . . . . . . . . . . . . . . . . . 4
d. The Resultant Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

3. Solving Problems
a. Finding Maximum and Minimum Points . . . . . . . . . . . . . . . . . 5
b. Finding the Resulting Wave at a Point . . . . . . . . . . . . . . . . . . 6
c. Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
d. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

4. Young’s Experiment
a. Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
b. Coherent Sources Were the Key . . . . . . . . . . . . . . . . . . . . . . . . . 7
c. Angular Measure for the Path Difference . . . . . . . . . . . . . . . . .8
d. Positions of Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . . 9

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A. Time Averaging of Intensities . . . . . . . . . . . . . . . . . . . . . . . . . 12

2



ID Sheet: MISN-0-230

Title: Interference from Two Synchronized Wave Sources

Author: Peter Signell and William C. Lane, Dept. of Physics/Astronomy,
Mich. State Univ.

Version: 3/22/2000 Evaluation: Stage 0

Length: 1 hr; 28 pages

Input Skills:

1. Vocabulary: wave disturbance, amplitude, frequency, wavelength,
wave number (MISN-0-201) or (MISN-0-430); intensity (MISN-0-
203) or (MISN-0-430); light wave (MISN-0-212) or (MISN-0-430).

2. State the mathematical expression describing a one-dimensional
single-frequency wave disturbance as a function of time and dis-
tance from the wave source (MISN-0-203).

Output Skills (Knowledge):

K1. Vocabulary: central maximum, coherent wave sources, construc-
tive interference, destructive interference, interference pattern,
path difference, phase difference, angular frequency.

K2. State the conditions for destructive and constructive interference,
both in terms of phase difference and in terms of path difference.

K3. State the expression for the intensity of the net wave disturbance
produced by two equal-amplitude waves from coherent sources, as
a function of path difference.

Output Skills (Problem Solving):

S1. Determine by mathematical and graphical methods the amount of
net wave disturbance at a given point in space produced by two
equal-amplitude coherent-source waves.

S2. Determine points in space where two equal-amplitude coherent-
source waves produce maximum or minimum resultant waves.

S2. Sketch the wave disturbance, produced at a given point in space by
two equal-amplitude coherent-source waves, as functions of time,
along with each of the contributing waves.

External Resources (Required):

1. Ruler, protractor.

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4



MISN-0-230 1

INTERFERENCE FROM

TWO SYNCHRONIZED WAVE SOURCES

by

Peter Signell and William C. Lane, Michigan State
University

1. Introduction

1a. Overview. The interference of waves is one of the most important
and useful phenomena in physics. Historically, interference effects helped
confirm the wave nature of light. The bending of sound and light waves
around obstacles and corners, the fundamental limitation of the resolving
power of optical instruments, the existence of “dead spots” in an audito-
rium, the appearance of colored rings in oil slicks, and the non-reflective
properties of thin-metal coatings on lenses are all examples of interference
and its related phenomenon, diffraction.

1b. Synchronized Wave Sources. Interference of two waves is gener-
ally only useful if the waves have the same frequency and hence a constant
phase difference. This will happen if the two different waves come from
sources that are “synchronized” so they emit crests at the same time,
troughs at the same time, etc. As an illustration, think of an infinitely
large swimming pool. Out in the middle are two flat horizontal discs
just under the surface of the water (they are parallel to the surface). A
vertical rod is connected to each disc. The two rods go straight up to
an overhead crankshaft which causes the discs to move up and down to-
gether so they are synchronized wave sources. They move up and down
with the same amplitude so they are equal sources of waves. The com-
bination of waves from both wave sources is visually apparent over the
surface of the water as an “interference pattern” with some areas that
move up and down, some points in the centers of those areas that become
first maximum-height peaks and then minimum-height troughs, and some
points between the “up and down” areas that never move at all (“nodes”).

1c. Source-to-Point Distances are the Key. All that is required
to predict the interference pattern at some space point, due to two syn-
chronous wave sources, is the differing distances of the two sources from
the point where the interference is being examined. This is illustrated in
Fig. 1 where the distance difference is called ∆.
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source #1

source #2

P

d1

D º d1 - d2

d2

Figure 1. Two wave sources
and a point P where we wish
to examine the interference
between waves from the two
sources.

1d. Constructive interference. If there are two sources and their
distances to the space-point in question are equal, the crest of the wave
from one source will arrive at the same time as a crest of the wave from
the other source. At that time, at that point, the two crests will add to
make a single crest which has the height of the sum of the two individual
crests. A quarter cycle later, at the same point, a node of one wave will
arrive at the same time as a node of the other wave and these two nodes
will produce a resultant node (two zeros add to zero). A quarter period
later the troughs of the two waves will arrive and produce a trough that
is as deep as the sum of the two. Because the various parts of the two
waves arrive together, the two waves are said to “in phase.” As time goes
on at that space point, the two waves produce what looks like a single
wave passing by which is twice as larger as either of the contributing
waves alone (see Fig. 2). This is called “constructive interference.” This
completely constructive interference will occur at any point P where the
distance difference ∆ is an integer number of wavelengths since then the
crest of the wave from one source will arrive at the same time as a crest
from the other source.1

1e. Destructive Interference. If the distances from two synchronous
sources to a space point differ by a half integral number (1/2, 3/2, 5/2,
...) of wavelengths, then a crest of one wave will arrive at the same time
as a trough of the other wave and, if the two waves have equal amplitude,
the two will cancel to produce zero wave disturbance at that point at
that time. Half a cycle later the crest and trough will be reversed but the
waves will still cancel. The addition of such waves will produce a node
(zero wave height) at all times hence there will never be any observed wave

1For example if, at the point P , the distances d1 and d2 are such that ∆ = 3λ,
where λ is the waves’ common wavelength, then the 13th wave crest from one source
will arrive at the point P at the same time as the 16th wave crest from the other
source. Because crest arrives with crest, they will add to produce a crest that is twice
as high as the crest of either one alone.
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resultant wave

wave from source #1 =
wave from source #2

At one
space
point

Figure 2. Two equal-amplitude waves from synchronous
sources arriving in phase at the point P of Fig. 1.

at such space points (see Fig. 3). We say that the waves are “completely
out of phase.” This called “destructive interference.”

1f. Goals of This Module. In this module we concentrate on find-
ing the wave at some given space point resulting from two synchronous
sources located some distance away, with the additional assumption that
the amplitudes of the two arriving waves are equal.2 These simplifica-
tions, synchronicity and equal arriving amplitudes, make problem-solving
simpler while retaining the essential aspects of interference. Specifically,
we consider these two types of problems: (1) the two sources and the
space point are given and the goal is to find the observed resultant wave
at the space point as a function of time; or (2) the sources are given and
the goal is to find space points where the resultant wave amplitude is a
maximum or a minimum (zero). In both these cases one must compute
the sources-to-point distances difference and compare it to the waves’

2More-general cases are treated elsewhere (see, for example, MISN-0-231).

resultant wave

wave from source #1

wave from source #2

Figure 3. Two equal-amplitude waves from synchronous
sources arriving completely out of phase at the point P of
Fig. 1.
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wavelength to see the extent to which the waves add constructively or
destructively.

2. Mathematical Description

2a. The Phase Difference: Description. We combine two travel-
ling waves that have the same frequency, wavelength, and amplitude, but
differing phase. The reason the phases of the two waves are different is
because their synchronized sources are different distances away from the
point where we are examining the waves. If at some time we see that one
wave arrives one-quarter cycle (one-fourth of a period) ahead of the other
wave, that one-quarter wave difference between the two will be constant
with time because the sources and the examination point are assumed to
be stationary. One can describe the one-quarter-wave difference as a 90◦

phase difference between the two waves or, entirely equivalently, as a π/2
radian phase difference.

2b. The Phase Difference: Calculation. Equal-amplitude waves
from two synchronous sources, examined at some specific space point,
will have a constant phase difference which can be computed from the
waves’ wavelength and the difference between the distances to the two
sources:

δ =
∆

λ
2π radians; or δ =

∆

λ
360◦ .

Here ∆ is the sources-to-point distances difference and λ if the waves’
common wavelength. We can simplify the phase equation by introducing
the waves’ common wave number, k ≡ 2π/λ:

δ = k∆ . (1)

2c. Derivation of the Phase Difference. We can write the individ-
ual heights, ξ1 and ξ2, of the two waves arriving at the examination point
P as:

ξ1(P, t) = ξ0 sin(kd1 + ωt) ,

ξ2(P, t) = ξ0 sin(kd2 + ωt) ,
(2)

where ω is the waves’ common “angular frequency” (ω ≡ 2πν ≡ 2π/τ),
ν is their frequency, τ is their period (the time for one complete wave to
be emitted by the source or to pass the point P ), the two ξ0’s are the
waves’ amplitudes, the ξ(d1, t) and ξ(d2, t) are the waves’ disturbances at
their distances d1 and d2 from the source at time t. Note that we have
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taken time zero on our stop-watch (t = 0) as being when the waves are
rising through a node as they come out of their sources (zero phases at
that time). We can eliminate k d2 betwen Eqs. (1) and (2) to get:

ξ1(P, t) = ξ0 sin(kd1 + ωt) ,

ξ2(P, t) = ξ0 sin(kd1 + ωt+ δ) .
(3)

This form makes it clear that the two waves are identical at any space
point except for a phase difference δ which depends only on the distance
difference and not on time.

2d. The Resultant Wave. Two equal-amplitude synchonous-source
waves, ξ1 and ξ2, simply add at any point to give a resulting wave ξR
which is a function of time at that point:

ξR(P, t) = ξ0 sin(kd1 + ωt+ φ) + ξ0 sin(kd1 + ωt+ φ+ δ) , (4)

where we have used Eqs. (3). We now use trigonometric identities on the
right-hand side of Eq. (4) to get the equivalent single-wave form:

ξR(P, t) = ξR0(P ) sin

(

kd1 + ωt+
δ

2

)

, (5)

where
ξR0(P ) = ξ02 cos(δ/2) . (6)

Thus the resultant disturbance is itself just a wave like either of the two
incident waves, with their wavelength and their frequency, but with a dif-
ferent amplitude and phase. Note that, for this case of equal-amplitude
incident waves, the resultant wave’s phase constant is just half way be-
tween the two incident waves’ phases (compare Eq. (5) to Eqs.(3)).

¤ Evaluate Eq. (5), using Eq. (6) to evaluate ξR0(P ), for the cases: (i)
δ = 0; (ii) δ = π; (iii) δ = 2π. Also determine the difference between the
two source-to-point distances for each case. Help: [S-1]

3. Solving Problems

3a. Finding Maximum and Minimum Points. To find places
where the resultant wave is always zero, we need only solve Eq. (5) for
those δs which make the wave’s amplitude always zero, (δ = π, 3π, ...),
and then solve Eq. (1) for the corresponding distance differences, (∆ =
λ/2, 3λ/2, ...). To find the places where the resulting wave disturbances

9
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source #1

source #2

P

x

L

d1

d/2

d/2

d2

Figure 4. Specification
of dimensions for Fig. 1.

are maximum, we go through the same process using those δs which make
the resulting wave’s amplitude a maximum, (δ = 0, 2π, 4π, ...) with the
corresponding distance differences, (∆ = 0, λ, 2λ, ...).

3b. Finding the Resulting Wave at a Point. To find the resulting
wave at a point we need only measure the distances from the point to the
sources, then calculate δ from Eq. (1), then calculate ξR0(P ) from Eq. (6),
then calculate the resultant wave itself from Eq. (5).

3c. Intensity. If wave intensity I = |ξR(P, t)|
2 is needed or given

rather than wave amplitude, note that a place of maximum, minimum, or
zero amplitude will be a place of maximum, minimum, or zero intensity
as well.

3d. An Example. Suppose there are two synchronous sources located
a distance d apart as in Fig. 4: we are given the source waves’ wavelengths
and are asked to find the first spot P a distance x up the line in the figure
where the interference pattern between the equal-amplitude waves shows
a constant zero disturbance.3 One way to solve the problem would be to
get out a scale (a “ruler”) and measure the distances from the sources to
some point P at an x and use the distance difference to see if ∆ = λ/2;
if not, keep moving to new points P and recalculating ∆ until the point
with a wave minimum is found. Alternatively, one can solve the equation

d1,min − d2,min = λ/2 , (7)

where d1,min and d2,min are the distances to the P that shows the min-
imum. Equation (7) can be written in terms of the variables in Fig. 4
as:

√

L2 + (xmin + d/2)2 −
√

L2 + (xmin − d/2)2 = λ/2 . (8)

3The line containing P is perpendicular to the perpendicular bisector of the line
connecting the two sources; x is measured from the perpendicular bisector as shown.
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Here we solve for xmin, the position of the first minimum resultant distur-
bance found as x increases from zero; the first position where the distances
differ by a half integral number of wavelengths. Solving Eq. (8) directly
is somewhat involved.4

Most applications of Eq. (8) to light make the very good assumption
that (x± d/2) ¿ L whereupon Eq. (8) reduces to the very manageable:

xmin ≈
λL

2d
. (9)

4. Young’s Experiment

4a. Historical Overview. In 1801 Thomas Young demonstrated the
interference of light, thus confirming the wave nature of light. Until this
time, the particle theory of light proposed by Sir Isaac Newton was the
viewpoint accepted by the majority of the scientific community, despite
the claims of theorists such as Huygens that light was a wave phenomenon.
The results of Young’s experiment, though disbelieved by many at the
time, gave indisputable proof that light has wave-like properties such as
wavelength and frequency. The discoveries of Quantum Mechanics in the
present century have shed further light on the nature of light and on its
wave-like and particle-like properties.5

4b. Coherent Sources Were the Key. An absolutely essential re-
quirement for interference to be observed is the availability of coherent

4To solve Eq. (8) formally, square both sides and then isolate the one remaining
square root on one side of the equation. Square both sides again and the square root
will be gone. The resulting equation is a quartic (fourth-order) polynomial equation.
A similar case is solved in Problem 6 of this module’s Problem Supplement, using
shortcuts available for this case. To solve any quartic equation brainlessly, follow the
directions in Handbook of Mathematical Functions, Ed. by Abromowitz and Segun,
U.S. Department of Commerce, National Bureau of Standards Applied Mathematics
Series No. 55, U.S. Government Printing Office, Washington D.C. (1970), p. 17. The
method involves combining the quartic equation’s coefficients in three ways and using
those combinations as the coefficients in a cubic equation. The cubic equation is then
solved using the technique given many places, including in Abromowitz. The real
solution of the cubic equation is then combined with the quartic equation’s coefficients
in four ways to produce the coefficients of two different quadratic equations. Each of
those quadratic equations has two solutions and the four solutions together are the
four solutions to the original quartic equation. On the other hand, the equation can
be solved numerically through use of polynomial-root-finding computer programs.

5See Characteristics of Photons, MISN-0-212, andWave Particle Duality for Light,
MISN-0-246.
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Figure 5. A schematic dia-
gram of Young’s two-slit ex-
periment.

sources of light waves; that is, sources that have constant phase differences
over periods of time long enough for observation. Until Young’s experi-
ment, no one had succeeded in producing a pair of coherent sources. By
illuminating two narrow parallel slits in an opaque shield, separated by
distance d (measured from the center of each slit), with a single wave
front of light, these slits act as coherent sources, causing an interference
pattern to appear on a screen a distance L away from and parallel to
the plane of the two slits (see Fig. 5). The slits act as cylindrical wave
sources, producing “cylindrical waves” which only drop off in intensity as
r−1 instead of r−2 as for a spherical wave. Thus the assumption of equal-
amplitude waves from equal sources is usually a better approximation
for the cylindrical waves produced by line sources than for the spherical
waves produced by point sources.

4c. Angular Measure for the Path Difference. For Young’s ex-
periment, and for any geometry like Fig. 5 where x and d are much smaller
than L, it is useful to combine x and L and merely specify the angle θ
shown in Figs. 6 and 7. The path difference is then:

∆ = d2 − d1 ' θ d for θ ¿ 1 . (10)

where we have used the fact that sin θ ≈ tan θ ≈ θ for θ ¿ 1. Note that
the two rays are nearly parallel. Combining this geometrical expression for
the path difference of two waves with the criteria for interference maxima

12
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Figure 6. The calculation of the path difference for parallel
path distances.

and minima, we obtain the result:

θn d =















nλ, for maxima

(

n+
1

2

)

λ, for minima















n = 0, 1, 2, . . . and d¿ L .

(11)
Here θn is the angular position of the n

th maximum or minimum.6

4d. Positions of Maxima and Minima. For fixed slit separation d
and wavelength λ, the angular positions of the maxima and minima de-
pends only on the value of n. The value of n determines the “interference

6If a lens is used to focus the rays on the screen, one can use exactly parallel rays
in Fig. 6 and then the left side of Eq. (11) becomes d sin θn.

x : position of

nth maximum
n

x : position of

central maximum
0

L

q
d

l

wavelength

Figure 7. The position of maxima for Young’s two-slit ex-
periment.
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I( )q d

0-l l 2l q d

Figure 8. The intensity as a function of screen position
(scaled by a convenient factor) for the two-slit experiment.

order” of maxima and minima on the screen. For n = 0, there is only one
angle at which there is a maximum; at θ = 0. This maximum is called the
“central maximum” and lies on the perpendicular bisector of the slits (see
Fig. 7). There is a minimum on either side of the central maximum at the
angular positions θ = ±λ/2d. Further maxima and minima appear on the
screen at larger angles. These are referred to as the “nth order” maxima
and minima, corresponding to the number of complete wavelengths in the
path difference. Figure 8 shows a graph of intensity as a function of the
angle to the screen position x. We assume θ ¿ 1 and plot (θd) so the
positions of the minima and maxima will have simple values.
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Glossary

• central maximum: in the interference pattern on a screen whose
surface is parallel to the line joining a set of evenly spaced synchroized
sources: the intensity peak directly in front of the center of the row of
sources.

• coherent wave sources: a group of wave sources whose waves have
constant phase differences (among them) over a period sufficient for

14
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interference patterns to be observed.

• constructive interference: a combination of two or more wave dis-
placements at a particular point in space where the net wave intensity is
greater than the intensity of any of the individual wave displacements.

• destructive interference: a combination of two or more wave dis-
placements at a particular point in space where the net wave intensity
is less than the intensity of any of the individual wave displacements.

• interference pattern: a spatial variation in the net intensity of the
combined wave disturbance due to two or more sources of waves that
have constant phase differences.

• interference order: the number of complete wavelengths in the path
difference between waves from two successive synchronized wave sources
that combine at a point in space to form an interference maximum. This
number is used to count the maxima, e.g. the third order maxima are
the third intensity peaks in the interference pattern on either side of
the central maximum.

• maxima: in interference patterns, points of total constructive inter-
ference, where the intensity of the interference pattern is at its great-
est. These points occur when the wave displacements from the various
sources present are completely in phase.

• minima: in interference patterns, points of destructive interference,
where the intensity of the interference pattern is at its weakest. These
points occur when the phase difference of the individual wave displace-
ments results in a net disturbance of minimal amplitude.

• path difference: in interference patterns, the difference in the dis-
tance that two waves from successive synchronized wave sources travel
to reach a given point in space where the net wave displacements are
being examined.

• phase difference: in interference patterns, the difference in the phase
of two wave displacements that combine at a given point in space where
the net wave displacements are being examined. The phase difference
is related to the path difference and the wavelength of the wave.

• synchronized sources: of waves emit waves of the same frequency
and phase.

15

MISN-0-230 12

A. Time Averaging of Intensities

The intensity of the net wave disturbance produced by two or more
synchronized wave sources at point P may be written as:

I(P, t) = I0(P ) cos
2 (ωt+ φ) ,

where all spatial coordinate dependencies are included in the time-
independent factor I0(P ). Since the maximum value of cos2 θ is 1 and
its minimum value is zero, the intensity at a fixed point in space oscillates
back and forth between its peak value of I0(P ) and its minimum value of
zero. The angular frequency of this oscillation is ω. These fluctuations
are usually too rapid to be detected, so measurements are made of the
time-averaged intensity.

The long term time-average is the same as the average over one wave
period, since all wave periods are duplicates of each other, so we need only
calculate the average over one period. The time-average of the intensity
is denoted Iav(P ) and is defined by:

Iav(P ) =
1

T

∫ T

0

I0(P, t) dt =
1

T

∫ T

0

I0(P ) cos
2 (ωt+ φ) dt ,

where T = 2π/ω, which is one period of the wave oscillation. For radio
waves, one period is in the region of microseconds (10−6 s).

If we let ωt + φ = x so ωdt = dx, and use ωT = 2π, the integral
assumes this form:

Iav(P ) =
I0(P )

2π

∫ 2π+φ

φ

cos2 x dx =
I0(P )

2π

∫ 2π

0

cos2 x dx ,

where we have used the fact that the integral over any one period of extent
T is the same as the integral over any other period of extent T .

We now use the fact that the integral of cos2 over a complete period
is exactly the same as the integral of sin2 over a complete period (one
looks just like the other, on a graph, but shifted.) Then we can rewrite
the integral over cos2 as half the integral over the sum of the sin2 plus
the cos2. However, the sum of those two quantities is just 1, so we get:

Iav(P ) =
I(P )

2π

1

2

∫ 2π

0

1 dx =
1

2
I(P ) .

Thus the time-average of an intensity varying as cos2(ωt+ φ) is one-half
the peak intensity. Of course the same result holds if the time dependence
is sin2 (ωt+ φ).

16
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Figure 9. The variation in wave intensity as a function of
time at a given space point P at which we observe interfer-
ence. The time origin was arbitrarily chosen to coincide with
an intensity peak.
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PROBLEM SUPPLEMENT

Problem 5 also occurs in this module’s Model Exam.

1.

1

2

3.0 m
AMP

P

v = speed of sound = 3.30 x 10 m/ss
2

12.0 m

10.0 m

Two identical speakers are connected to the left and right channel
output of a stereo amplifier. A single-frequency tone, ν = 660Hz, is
played over the system. A point P is 12.0m from speaker #1 and
10.0m from speaker #2.

a. Assuming the speakers are properly connected to the amplifier, i.e.
are “in phase,” they constitute two synchronized sources of sound
waves. Determine wherhet the interference occurring at point P is
constructive or destructive.

b. By reversing the connections on one of the speakers, the speakers
are 180◦ “out of phase”: when speaker #1 is producing a wave
“crest,” speaker #2 is producing a wave “trough.” Describe the
type of interference now taking place at point P .

2. The wave disturbances at a particular point in space P , produced by
two wave sources, are given by the equations:

ξ1(P, t) = ξ0 sin(kd1 + ωt+ φ1)

ξ2(P, t) = ξ0 sin(kd2 + ωt+ φ2)

The sources are synchronized if the frequencies are the same (they are)
and if the phase constants are the same, i.e. φ1 = φ2. Suppose that
φ1 = φ2 = −π/2. This means that, at t = 0 and d1 = d2 = 0:

ξ1(0, 0) = ξ2(0, 0) = ξ0 sin(−π/2) = −ξ0

18
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which means that a wave “trough” is leaving each source. Sketch ξ1,
ξ2 and the net wave disturbance, ξ = ξ1 + ξ2, as functions of ωt when:

a. d1 = λ/4, d2 = 3λ/4

b. d1 = λ/4, d2 = 5λ/4

c. d1 = λ/4, d2 = λ.

Characterize the type of interference for each situation.

3. A point in space is 45.0meters from one wave source and 45.4meters
from another wave source. The two wave sources are synchronized, of
equal intensity and produce waves of frequency 165Hz and wavelength
2.00meters. Determine the average wave intensity at the given point
and then write down your answer in terms of the average intensity
either wave would show if the other wave was not present.

4. In Young’s 2-slit interference pattern, determine the spacing between
adjacent maxima and between adjacent minima (see the figure below).

x : position of

nth maximum
n

x : position of

central maximum
0

L

q
d

l

wavelength

5. Two identical synchronized wave sources emit wavelength λ = 5.86m,
and are located at x = ±4.00m, y = 0.

a. Determine whether the amount of wave disturbance at the point
x0 = 8.00m, y0 = 6.93m is a minimum or a maximum. Draw
a rough sketch of the geometrical layout and show all the steps
involved in obtaining the answer.

b. Sketch a rough graph of the wave disturbance at the point x1 =
1.00m, y1 = 3.00m as a function of time. Let t = 0 on your graph
be the time at which a wave crest from the source at x = −4.00m,
y = 0 arrives at the point (x1,y1). Also show on the graph
the disturbance which each source alone would have produced.
Help: [S-3]
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c. Using graph paper, a pen or pencil, and a ruler, show that x =
0.63m must be a point of minimum intensity (within graphical ac-
curacy) along the line y2 = 3.00m if the two sources are located as
above but have wavelengths of λ = 2.00m. Describe all necessary
reasoning.

6. (only for those interested; must use a significant amount of
algebraic manipulation):

y = L

y

d1

d2
q

-x0 x0

d

P

Two synchronized wave sources are located at (d/2,0) and (−d/2,0).
Using geometry and the condition for constructive interference, derive
a formula for the exact positions, x, of interference maxima along the
line y = L. Use no approximations.

7. (only for those interested; must use a significant amount of alge-
braic manipulation): Derive the result of Problem 4 a different way
by noting that the constructive interference condition, d1 − d2 = nλ,
where nλ is a constant for a given n, is the equation of an hyperbola
(actually a family of hyperbolas, since n = 0, 1, 2,. . . ). The Cartesian
coordinate equation of an hyperbola, centered at the origin with foci
at x0 and −x0, is:

x2

a2
−
y2

b2
= 1,

where a and b are the semi-major and semi-minor axes of the hyper-
bola. In terms of d1 and d2 an hyperbola can be written:

d1 − d2 = 2a

so a = nλ/2. Finally the relation x0 = (a
2 + b2)1/2 defines b, given a

and x0. Use the above information to solve for the positions x where
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the hyperbolas intersect the line y = L. These are the locations of in-
terference maxima along y = L. Note that the same type of derivation
could be carried out to locate interference minima using the relation:

d1 − d2 =

(

n+
1

2

)

λ, n = 0, 1, 2 . . .

21
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Brief Answers:

1. a. constructive interference

b. destructive interference

2. a. Total Destructive Interference:

x

x2

x2

x1

x1
wt

+

b. Total Constructive Interference:

x

x2

x2

x1,

x1

wt

+

c. “Intermediate” Interference Help: [S-3]

3. Iav(both sources) = 2.62Iav(one source).

4. ∆x = λL/d for adjacent maxima; ∆x = λL/d for adjacent minima.

5. a. Maximum Help: [S-3]

b. The wave from (+4.00m,0) will arrive 0.271 of a period ahead of
the wave from (−4.00m,0) hence: Help: [S-2]
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x

t

resultant (observed)

disturbance
from

(-4,0)

from

(+4,0)

c. (Construct the graph).

6.

xn = ±

(

nλ

2

)

√

1 +
L2

(d/2)2 − (nλ/2)2
Help: [S-1]

7. Same as Answer 6.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 6)

d1−d2 = nλ, where d1 and d2 are defined in terms of somewhat unwieldy
square roots. Be sure to move d2 to the other side of the equation before
squaring to solve for x, i.e.

d2
1 = (d2 + nλ)2 = d2

2 + 2nλd2 + (nλ)
2.

Substituting the expressions for d2
1 and d

2
2 (leaving d2 as is, temporarily)

several terms cancel. You can then isolate d2 on one side and square
again, then solve for x.

S-2 (from PS-problem 5b)

Most parts of this problem are contained in problems 1-4 and this mod-
ule’s text and Glossary. Do problems 1-4 first. Do not merely copy their
answers: make sure you work out their complete solutions yourself.

Apart from the above, be aware that the sources are both on the x-
axis and that the point at which you are asked to find the degree of
interference is above the x-axis (a positive y value).

Also, the path-difference-to-wavelength ratio equals the time-difference-
to-period ratio. Here the time difference is the difference in the amount
of time it takes simultaneously-emitted waves to get from their sources
to the point in question. That is, one can clock the amount of time it
takes a wave peak, say, to get from one source to the point. One can
also clock the time it takes for the simultaneously-emitted peak from
the other source to get to the point: the time difference is the difference
in those two times.

Finally, note that the crest from the source at (+4.00m,0) arrives before
the crest from the source at (−4.00m,0) because it has a shorter distance
to travel. That means it must arrive at a time before time zero so it
must arrive at a negative time (see the figure in the answer).
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S-3 (from PS-problem 2c)

The curves plotted represent:

ξ1 = ξ0 sin(ωt)

ξ2 = ξ0 sin(ωt+ 3π/2)

= ξ0 sin(ωt− π/2).

Note that one must use: k = 2π/λ and (3/4)(2π) = 3π/2.
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MODEL EXAM

Note: You must bring a ruler and a pen or pencil to the exam. Ask the
exam manager for a piece of graph paper if you need it and it is not given
on the exam.

1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. Consider two synchronized wave sources with wavelength λ = 5.86m,
located at x = ±4.00m, y = 0.

a. Determine whether the amount of wave disturbance at the point
x0 = 8.00m, y0 = 6.93m is a minimum or a maximum. Draw
a rough sketch of the geometrical layout and show all the steps
involved in obtaining the answer.

b. Sketch a rough graph of the wave disturbance at the point x1 =
1.00m, y1 = 3.00m as a function of time. Make t = 0 be the time
at which a wave crest from the source at x = −4.00m, y = 0 arrives
at the point (x1, y1). Also show on the graph the disturbance which
each source alone would have produced.

c. Using graph paper, a pen or pencil, and a ruler, show that x =
0.63m must be a point of minimum intensity (within graphical ac-
curacy) along the line y2 = 3.00m if the two sources are located as
above but have wavelengths of λ = 2.00m. Describe all necessary
reasoning.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 5.
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