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Input Skills:

1. Solve two simultaneous linear equations in two unknowns.

2. Given a set of energy levels, compute the wavelengths, frequencies,
and energies of the photons involved in transitions among them
(MISN-0-216).

3. Explain the origin of the classical rotational kinetic energy term:
L2/(2I) (MISN-0-251).

4. Explain each symbol in the quantum mechanical angular momen-
tum expression: L2 = `(`+ 1)h̄2 (MISN-0-251).

5. (Helpful) Explain the origin of the reduced mass µ in the 2-body
moment of inertia: I = µr2 (MISN-0-45).

Output Skills (Knowledge):

K1. Define “wave number” in terms of frequency.

K2. Draw diatomic molecule vibration-rotation energy levels, label
them with quantum numbers, and indicate P-Branch and R-
Branch allowed transitions.

K3. Explain the origin of each term in the expression for the vibration-
rotation energy levels of diatomic molecules.

Output Skills (Problem Solving):

S1. Given the spectrum of a species of diatomic molecule and values
for two of the wave numbers: (i) identify the transitions and sketch
them on an energy level diagram; and (ii) determine the equilib-
rium separation of the atoms, their inter-atomic force constant,
and their frequency of radial vibration.
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DIATOMIC MOLECULES: PROPERTIES FROM

ROTATION - VIBRATION SPECTRA

by

Peter Signell
Michigan State University

1. Overview

1a. Importance, Examples, Method, Results. In a broad sense,
molecular structure determines the form of everything we see in daily life.
This includes the texture of our skin, the shapes of clouds, the hardness
of wood, and the varying resiliencies of plastics. If we want to gain an
understanding of the basis of these things, and in fact all of biology, chem-
istry, and materials science, we must understand something of molecular
structure. In order to achieve a clear understanding of general principles,
we usually begin by studying the simplest system available: here it is the
diatomic molecule. Examples of two-atom molecules are: H2, O2, CO,
HCl, BeFl, etc. We will work through the general procedure for deter-
mining several properties of diatomic molecules from their spectra, then
treat CO in detail as an example. Finally, we will interpret some aspects
of daily life in terms of the results.

1b. Diatomic Molecules Oscillate and Rotate. The two atoms in a
diatomic molecule, like CO in Fig. 1, can be thought of as being connected
by a spring, so their motions are1 simultaneously oscillations about their
equilibrium radii from the CM point,2 and rotation of the equilibrium
points about a perpendicular axis through the CM. An observer far away
from the molecule might see only the rotational motion. On the other
hand, one rotating with the molecule would see only the synchronized
in - and - out oscillations of the two atoms. Of course the rotational
mode does not exist in a solid, but is continually excited and deexcited
by molecular collisions in liquids and gases. In contrast, the oscillations
can never cease, whether the molecule is in the solid, liquid or gaseous
state.

1For a full discussion of why the inter-atomic force can be considered spring-like,
see “Small Oscillations” (MISN-0-28).

2For a discussion of the CM (Center of Mass) see “Two-Body Kinematics and
Dynamics” (MISN-0-45).
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Figure 1. A representation of a CO molecule

1c. Spring Constant and Equilibrium Separation as Output.
A diatomic molecule’s spectral - line frequencies are determined by its
energy - level separations, and these in turn are determined by its spring
- like force’s stiffness k and equilibrium separation re, plus the two atomic
masses. The latter, being element masses, are very well known in all
cases so are used as input to the calculation of k and re from molecular
spectra. Of course in order to use a specific molecule’s spectral lines with
the general energy level formula, one must identify the specific energy
levels involved in the production of the lines. This involves examination
of a complete section of the spectrum, along with a usable knowledge
of the two rules which select the allowed transitions between rotation -
vibration energy levels. The flow chart illustrated in Fig. 2, reiterates
those elements necessary to determine the oscilator’s k and re.

2. Vibration-Rotation Transitions

2a. The Energy Level Formula, Quantum Numbers. The gen-
eral vibration - rotation energy - level formula for diatomic molecules is
the sum of two terms, one for the vibrational energy, the other for the
rotational energy:

E(v, `) = hν0(v +
1

2
) +

h̄2`(`+ 1)

2µr2
e

(1)
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v = 0, 1, 2, . . . 2πν0 ≡
√

k/µ

` = 0, 1, 2, . . .

If classical mechanics had been valid, the equation would have been:3

E =
1

2
k(r − re)

2 +
L2

2µr2
e

. (2)

In Eq. (1) and eq. (2), µ is the molecule’s reduced mass3 formed from the
masses of each of its constituent atoms (mA, mB):

µ ≡
mAmB

mA +mB
. (3)

Using the classical E of Eq. (2) in Quantum Mechanics’ Schrödinger
equation, one finds the allowed energies to be those specified in Eq. (1),
with the vibrational and rotational quantum numbers, v and `, being
restricted to zero and the positive integers.4

2b. Energy Intervals: Rotational ¿ Vibrational. The energy-
level separations corresponding to adjacent rotational `-values are gener-
ally about a thousandth of those corresponding to adjacent vibrational
v-values:

Molecule h̄2/2I hν0

(ev) (ev)
H2 .80× 10−2 0.54
O2 .18× 10−3 0.19
CO .24× 10−3 0.27
HCl .13× 10−2 0.37

Of course this is merely a manifestation of the interatomic-force stiff-
nesses and equilibrium separations generally found in diatomic molecules.
One might say that the values of the rather restricted range of free-
oscillation frequencies, ν0, are due to rather stiff spring-like forces, or
that the equilibrium separations re in the moment of inertia I are rather
large Help: [S-1] .

3See “Simple Harmonic Motion” (MISN-0-26) and “Two-Body Kinematics and Dy-
namics” (MISN-0-45).

4For the vibrational part of Eq. (1), see “The Schrödinger Equation in One Dimen-
sion” (MISN-0-242). For the rotational part, see “Quantization of Angular Momen-
tum” (MISN-0-251).
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Figure 2. Tools to uncover the oscillator’s physical proper-
ties

2c. Energy Level Diagrams: E(v, `) Labels. Since vibrational sep-
aration energies are very large compared to rotational, the energy level
diagram consists of a number of groups of closely - spaced rotational levels
separated by large vibrational gaps, as in Fig. 3 above (not to scale). The
zero-rotation levels, those for which ` = 0, are often called the vibrational
energy levels: they are evenly spaced. The rotational levels are not.

E(2,2)

E(2,1)
E(2,0)

E(1,2)

E(1,1)
E(1,0)

E(0,2)

E(0,1)
E(0,0)

Figure 3. A hypothetical energy level diagram illus-
trating the spacing between rotational and vibrational
levels
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(1,2)

(1,1)
(1,0)

(0,2)

(0,1)
(0,0)

“P branch”
= -1Dl

“R branch”
= +1Dl

P1 P0 R0 R1

Figure 4. Energy level diagram depict-
ing the vibrational and rotational energy
levels for a hypothetical molecule.

2d. Transition Selection Rules for v and `. Energy - level tran-
sitions involving the emission or absorption of light obey these selec-
tion rules: ∆v = ±1, ∆` = ±1. This means that, for example,
E(2, 1)→ E(1, 0) and E(2, 1)→ E(1, 2) are allowed but E(2, 1)→ E(1, 1)
is forbidden. The ∆` = ±1 rule arises from the need of the photon to
carry off 1h̄ of angular momentum,5 coupled with over - all conservation
of angular momentum. The ∆v = ±1 rule comes from a higher level of
Quantum Mechanics,5 applied to oscillator transitions. Using these rules,
the allowed transitions between the levels shown in Fig. 3 can be easily
drawn in. Some of these transitions are illustrated in Fig. 4.

2e. Spectra: The “P” and “R” Branches. The vibration - rotation
spectra are evenly spaced, but with a twice - as - wide gap at the center
of each group as seen in Fig. 5. The part of the group at frequencies
below the “missing” line is called the “P Branch” and it corresponds to

5For stimulated transitions: Perturbation Theory. For all transitions, stimulated
or spontaneous: Quantum Electrodynamics. Transitions which violate the rule occur
very infrequently compared to the rule-obeying transitions.

P1 P0 R0 R1
. . . . . .

n

SPECTRA

Figure 5. A typical vibrational-rotatinal spectrum.
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Figure 6. The spectra of C12O16 (see text)

frequencies for which ∆` = −1. The higher frequency “R Branch” has
∆` = +1. An easy way to identify the levels involved in any particular
line then, is to find the central gap and count lines to the one you are
interested in identifying.

3. C12-O16 as an Example

3a. Input Data: Wave Numbers. Suppose you have measured the
v = 1 ↔ v = 0 spectrum of C12O16 and find, for the wave numbers
ν ≡ ν/c, the spectra depicted in Fig. 6 on the R Branch.6 Note that
frequencies increase to the left, wavelengths to the right. We will use two
measured wave numbers;

νA = 2147.0381 cm−1,

νB = 2150.8579 cm−1,

6Figure from Rao, Humphries, Rank; Academic Press (1966)
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the masses of C12 and O16, the energy level formula, and the quantum
numbers of the levels involved, to find k and re.

3b. Solution Steps.

1. I ≡ µr2
e ; want re, can calculate µ, get I from ν’s.

µ ≡
mOmC

mO +mC
= 6.86 amu = 6.39GeV/c2

EA = E(1, 1)− E(0, 0) = hν0 + h̄2/I

EB = E(1, 2)− E(0, 1) = hν0 + 2h̄2/I Help: [S-2]

→ I =
h̄2

EB − EA
=

h̄c

2πc2(νB − νA)
= 0.0822 nm2 GeV/c2

re =
√

I/µ = 0.113 nm ' 2Bohr radii

2. 2πν0 =
√

k/µ; want k, have µ, get ν0 from ν’s.

k = µ4π2ν2
0
= (µc2)4π2(ν0/c)

2

ν0/c = (2EA − EB)/(hc) = 2νA − νB = 2.14× 105 m−1

→ k = 11.6KeVnm−2 = 10.6 1b/inch

ν0 = 0.64THz so the rotational period is 1.6 ps!

Note: We have used the conversion factors:

1 amu = 0.931GeV/c2

1N = 0.2248 lb ; 1m = 39.37 in.

and the constants: h̄c = 197.32 eVnm; c = 300Mms−1

4. Interpretation of Results

4a. Overview. The equilibrium separation values found in diatomic
molecules imply a rather large overlap of the atoms. This is a charac-
teristic of very strong bonding. One can use the diatomic molecule’s
force constant to get a ball-park estimate of the macroscopic result of
3-dimensional bonds for real materials. For this purpose we can consider
a solid to be connected of a 3-dimensional lattice of atoms, all connected
by springs. We will imagine pulling on opposite ends of a slab of the
material, streching the springs. We will then compute the over-all force
constant of the material from the force constants of each bond and the
number of bonds involved.
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F

F

Figure 7. A cube-like array of springs

4b. The overall spring constant K. If a cube-like array of springs
is pulled apart by its ends as shown in Fig. 7, the over-all force constant
K is related to the individual-spring force constants k by the relation:

K = N1/3k

where N is the number of springs in the cube. The one-third power de-
pendence arises from the (1/N 1/3) series-coupling diminution of the force
constant from the springs in the streching direction, multiplied by the
N2/3 parallel-coupling enhancement of the force constant from springs in
the two dimensions perpendicular to the streching direction. Help: [S-3]

4c. Numerical Result and Comparison to Data. The over all force
constant for a 1 cubic inch array of diatomic-magnitude force constants
k turns out to be about 109 lb/inch, to be compared to steel’s value of
3× 107 lb/inch. The numbers which go into the calculation are:

N ' 1024 springs (bonds)/in3(1.4× 1024 Fe atoms/in3 in steel)

k ' 10 lb/in.

The result shows that diatomic molecule bonds are about 30 times
stronger than the average bonds in steel.
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PROBLEM SUPPLEMENT

1. Given the ν = 1 → ν = 0 vibration - rotation spectrum of nitrogen
oxide (N14O16) below:7

(cm )-1
5985 5980 5975

n
–

R(1O)

R(O)
P(1)

30°1 00°0¬

N O14 16

35m

25 mm Hg

and the spectral lines:

νA = 5978.7905 cm−1

νB = 5978.0320 cm−1 ,

a. Deduce the molecule’s force constant, frequency of vibration, and
equilibrium separation.

b. Sketch the two transitions on an energy level diagram.

7Rao, Humphries, Rank; Academic Press (1966)
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Brief Answers:

1. a. k = 4π2 µc2(5νB − 4νA)
2 = 98.2KeV nm−2

re = (hc)1/2[2π(νA − νB)(µc2)]−1/2 = 0.224nm

ν0 = c(5νB − 4νA) = 179THz

b.
5

4

3

2

1

0

5

4

3

2

1

0

l

BA
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from from Text Sect. 2b)

hν0 À
h̄2

2I
says the table.

then: ν0 is large;

ν0 =
1

2π

√

k

µ
so k is large,

or: I is large;

I = µr2
e so re is large.

S-2 (from Text Sect. 3b)

Following the directions in Sect. 2e, we look for a gap in the spectrum.
We set the edge of a piece of paper along the spectra and mark the
positions of the major lines. We then shift the paper to the right and find
that a line is missing at the position marked “GAP”. That demonstrates
the gap’s position.
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S-3 (from Text Sect. 4b)

1. Parallel Springs: each spring has k, produces share of F :

F F

F =

n‖
∑

i=1

fi =

n‖
∑

i=1

(−kxi) = kxn‖

where n‖ ≡ number of coupled parallel springs.

But: F ≡ −Kx defines the over-all force constant.

Hence: K = n‖k

2. Series Springs: each spring has k, force F :

F F

F = fi = −kxi

x =

n⊥
∑

i=1

xi =

n⊥
∑

i=1

F

−k
= n⊥

F

−k

or:
F = −k

x

n⊥

where n⊥ ≡ number of coupled perpendicular springs.

Hence: K =
k

n⊥

3. If there are N springs,

n⊥ = N2/3 (2 dimensions)

n‖ = N1/3 (1 dimension)

total: N = n‖n⊥
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MODEL EXAM

me = 0.51× 106 ev/c2; h̄c = 1.973× 10−7 eVm

hc = 1.2397× 10−6 eVm; c = 3× 108 ms−1

1Å = 10−10 m; 1 amu = 0.931× 109 ev/c2

1 J = 6.242× 1018 eV

E(v, `) = (v +
1

2
)h̄ω0 + (h̄2/2I)`(`+ 1)

1. See Output Skills K1-K3 in this modules ID Sheet.

2. Given the v = 1 → v = 0 vibration-rotation spectrum of carbon
monoxide (C12016):8

2160 2150 2140
(cm-1)

n
–

and the spectral lines:

νA = 2158.4970 cm−1 ,

νB = 2162.3173 cm−1 ,

a. Deduce the force constant k and the equilibrium seperation re for
the molecule.

b. Sketch the two transitions on an energy level diagram.

8Rao, Humphries, Rank; Academic Press (1966)
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Brief Answers:

1. See this module’s text.

2. See this module’s text. Answers the same an in Sect. 3 except for the
transitions. They are (1, 4)→ (0, 3) and (1, 5)→ (0, 4).
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