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GENERATING SIMULATED DATA

by

Mike Brandl and Ray G.Van Ausdal

1. Overview

This module presents a method for generating random data which
simulates the data that might be received from an actual experiment.
Such simulated data could be used to test theoretical models in situa-
tions where experimental tests would be too expensive, time-consuming
or dangerous. (For example, the failure modes of a nuclear reactor must
be studied without the benefit of experiment.) Artificially generated data
could also be used to test methods of data reduction (such as least squares
fitting of a function).1

2. Describing Random Events

2a. Random Numbers: Uniform Distribution. A sequence of
numbers is “random” if the value of any number in that sequence cannot
be predicted from the values of the numbers preceding it.2 If all of the
possible values have the same probability of occurring in the sequence,
the numbers have a uniform distribution. The throw of a single die is an
example: all faces are equally likely.

2b. Non-uniform Distributions. If all the possible values do not
have the same probability of occurring, the numbers have a non-uniform
distribution. The probability of a certain value depends on the value itself.
The throw of a pair of dice is an example: “snake eyes” are not as likely as
sevens. Many physical situations involve non-uniform distributions. For
example, repeated measurements of a pendulum period show that values
near the mean value are more likely to occur than values far from the
mean.3

2c. Specifying Non-Uniform Probabilities. For discrete variables,
such as the number of radioactive decays occurring in a given time inter-
val, we could assign a probability to each possible value of the variable.
However, for continuous variables, like times or distances, there are an

1See “Least Squares Fitting of Experimental Data” (MISN-0-162).
2See “Generation of Random Numbers by Computer” (MISN-0-354).
3See “Errors in Measurement” (MISN-0-371).
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infinite number of possible values contained in any finite interval, so the
probability of any one particular value occurring is infinitesimal.

2d. The Probability Density Function. We can characterize the
probability of occurrence of values of a continuous variable x by the prob-
ability density function p(x), where

p(x0)dx = the (infinitesimal) probability that the value of the vari-
able x lies somewhere in the interval between x0 and
x0 + dx.

The quantity p(x) is the probability per unit interval in the variable
x.4

2e. The Probability Contained in a Finite Interval. The actual
probability P (x) (x1 ≤ x ≤ x2) that a continuous random variable x will
assume a value on the finite interval between x1 and x2 can be obtained
by integrating the probability density function between those two limits:

p(x1 ≤ x ≤ x2) =

∫ x2

x1

p(x′)dx′. (1)

Since the random variable x is certain to assume a value somewhere be-
tween its lowest and highest values x` and xµ, the integral of p(x) over
the total range of the variable must be equal to one:

∫ xu

xl

p(x′)dx′ = 1. (2)

That is, p(x) is “normalized” to one.

2f. The Cumulative Probability Function. The cumulative prob-
ability function Pc(x) is defined as

Pc(x) ≡

∫ x

xl

p(x′)dx′. (3)

Pc(x0) is the probability that the value of x lies somewhere between x`

and x0. Pc(x0) increases monotonically from zero at x` to one at xu (see
Fig. 1).

4This is sometimes called the “distribution function.”A “uniform distribution” is a
special case of the non-uniform distribution with p(x) = constant.
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P (x )c 0

P (x)c

p(x )0

x0

1

0 xx

p(x)

Figure 1. The cumulative probability function Pc(x) is the
integral of the probability density function p(x).

3. Data Generation: the Method

3a. A Four Step Process. The basic method used to generate data
whose distribution is described by a given probability density function is
suprisingly simple. There are four steps:5

(i) Given the probability density function p(x), form the cumulative
probability function, Pc(x).

(ii) Generate a pseudorandom number ri which is a member of a se-
quence of numbers uniformly distributed on the interval zero to
one.6

(iii) Find the value xi such that Pc(xi) = ri (see Fig. 2). Symbolically,
this process is written xi = Pc

−1(ri) .

(iv) Repeat steps (ii) and (iii) to obtain the desired set of values xi

distributed according to the probability density function p(x).

3b. The Basis: A Graphical Demonstration. Figure 3 demon-
strates graphically how this method changes a uniform distribution of
random numbers into a specific non-uniform distribution. The cumula-
tive probability function Pc(x) is plotted in Fig. 3a. A number of evenly
spaced points are placed on the vertical axis, representing the uniformly
distributed random numbers ri. Inversions of each of these ri are indicated
graphically. The resulting points on the x-axis represent the numbers xi

5In some cases, not all of these steps can be done simply. Approximations, numerical
methods or graphical methods might be required.

6You may choose to use tables or calculator or computer methods (MISN-0-354).
The cover of this module is a short table of pseudorandom numbers.
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P (x)c

ri

xi0 x
Figure 2. The process of finding xi =
P−1
c (ri) is indicated graphically.

corresponding to the ri’s.
7 The spacing of points on the x-axis is not

uniform, the points being closest together near the value at which the
probability density function (Fig. 3b.) has its maximum. A point on the
vertical axis chosen at random will be most likely to correspond to a point
in the densely packed region of the x-axis.

3c. The Basis (Mathematical, Demonstration). We can also show
mathematically that the data generated by this method will be distributed

7A second graphical method involves constructing histograms which can be com-
pared to p(x). See Sect. 5 of “Error Analysis of 50 Readings of 5 Second Intervals”
(MISN-0-373).

P (x)c

a)

b)

x

x

p(x)
Figure 3. Uniformly distributed num-
bers ri on the vertical axis translate
into non-uniformly distributed xi on
the horizontal axis. 18The region of
highest density corresponds to the peak
of p(x).
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according to p(x). Using the method of Sect. 3, we effectively started with
a probability density function p(x), and found a set of random variables
xi, each given by solving the following equation for xi:

ri = Pc(xi) =

∫ xi

xl

p(x′)dx′. (4)

We must show that the resulting probability density function for the vari-
ables xi (let us call it p1(x)) is the same as p(x). Since for each ri there
corresponds an xi, on a one to one basis, the (infinitesimal) probability
that xi has a value in the interval between x0 and x0 + dx is equal to
the probability that ri has its value in the corresponding interval r0 to
r0 + dr. That is,

p1(xo)dx = p2(ro)dr, (5)

or, in general,

p1(x) = p2(r)
dr

dx
, (6)

Since r has a uniform distribution on the interval zero to one, p2(r) = K,
a constant. The normalization conditon, Equation (2), demands that
K = 1. Equation (6) becomes

p1(x) =
dr

dx
=

d

dx

∫ x

xl

p(x′)dx′ = p(x). (7)

That is, p1(x) = p(x), as needed.

4. The Lorentzian Distribution

4a. Typical Uses for the Lorentzian. The Lorentzian distribution
is often used in quantum mechanics to describe resonance phenomena.
For instance, a proton and a pion are most likely to interact in a collision
when their total energy is close to the mass-energy of a delta particle. The
probability of an interaction as a function of energy, p(E), is Lorentzian
in form. The distribution of photon energies within a given spectral line
is also Lorentzian.

4b. The Lorentzian Function. The Lorentzian probability density
function is

PL(x) =
1

π

Γ/2

(x− µ)2 + (Γ/2)2
, (8)

where µ is the mean value of the variable x and Γ is the “full width at
half maximum” of the peak (see Figure 4).
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xm
G

p(x)

Pmax

½Pmax

Figure 4. The Lorentzian distribution is peaked symmetri-
cally about the mean value µ. Its shape depends upon the
value for Γ.

4c. Pc(x) for the Lorentzian. The cumulative probability function
for the Lorentzian distribution is

Pc(x) =

∫ x

−∞

1

π

Γ/2

(x′ − µ)2 + (Γ/2)2
dx′, (9)

since the values of x may range from −∞ to +∞. Performing the inte-
gration yields

Pc(x) =
1

π
tan−1

(

x− µ

Γ/2

)

+
1

2
. (10)

4d. Generating Lorentzian Data. Our process involves repeatedly
setting Pc(x) equal to some random number ri between zero and one,
and solving for the corresponding xi. We can solve for xi algebraically,
yielding

xi =
Γ

2
tan

[

π

(

ri −
1

2

)]

+ µ. (11)

4e. Sample Data. We now use random numbers ri to generate
Lorentzian data xi. Table I lists data generated by this method for two
different cases. The first is for µ = 1/2, Γ = 0.05 (a “narrow” distribu-
tion). The second is for µ = 1/2, Γ = 0.5 (a “wide” distribution).
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Table I. Simulated “Lorentzian” data depend
on Γ, the “width” of the distribution.

xi Data xi Data Original

“Narrow” “Wide” r†i
0.48792 0.37915 .35667
0.48465 0.34646 .32469
0.46490 0.14899 .19700
0.53481 0.84810 .80175
0.45384 0.03837 .15799
0.57377 1.23767 .89599
0.49331 0.43307 .41673
0.52238 0.72379 .73241
0.67149 2.21486 .95392
0.35731 -0.92688 .05521

Mean=0.504 Mean=0.544
† Pseudorandom numbers generated by the power

residue method.

Note that just as in a real experiment, you do not get exactly the “right”
answer. Neither data set gives a mean value of exactly 1/2 and nei-
ther is even symmetric about x = 1/2. That is, in this case, more data
points lie below that value than above. A very large amount of data
would need to be generated to show the true Lorentzian character of the
distribution.8

5. The Gaussian Distribution

5a. Typical Uses for the Gaussian. Random errors of measurement
will cause a set of repeated measurements of the same quantity to be
distributed according to the Gaussian distribution.8 For example, ten
measurements of a pendulum period will not give exactly the same result
because of these random errors.

5b. The Gaussian Function. A Gaussian distribution probability
density function is

p(x) =
1

σ(2π)1/2
e
−
(x− µ)2

2σ , (12)

8Also called the “bell-shaped curve.”
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where µ is the mean value of the variable x, and σ is the standard deviation
of the measurements. (If many repeated measurements are made, about
68% of them will lie in the range µ± σ.)

5c. Pc(x) and P−1
c (x) for the Gaussian. The expression

Pc(x) =

∫ x

−∞

1

σ(2π)1/2
e
−
(x− µ)2

2σ dx, (13)

cannot be integrated analytically. However, algebraic formulas for Pc(x)
and P−1

c (x) do exist. The function we need is

x = P−1
c (r) ' σ

[

t−
co + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

]

+ µ, (14)

where t =
[

`n (1− r)−2
]1/2

co = 2.515517; c1 = 0.802853; c2 = 0.010328

d1 = 1.432788; d2 = 0.189269; d3 = 0.001308

Clearly, if much data must be generated a computer should be
used.
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PROBLEM SUPPLEMENT

1. The values of a variable x are distributed according to the probability
density function p(x) = C, a constant, in the interval |x| ≤ 1 and
p(x) = 0 for 1 < |x|.

a. Use the normalization condition to find the value of C.

b. Sketch p(x) vs. x.

c. What is the probability that x will occur in the range −1 ≤ x ≤ 0?

d. Integrate p(x) to find Pc(x).

e. Sketch Pc(x) vs. x.

f. Write the equation xi = P−1
c (ri).

g. Generate 20 data points xi. Examine the results and describe their
distribution qualitatively.

h. What fraction of your generated data points lie in the range −1 ≤
x ≤ 0? How should the answer compare with your answer to part
(c)?

2. The actual lifetimes t of unstable nuclei of a given species are dis-
tributed according to the probability density function

p(t) =
1

τ
e−t/τ for 0 ≤ t ≤ ∞.

τ is the mean lifetime of that species. Assume that τ = 1 second for
this example.

a. Sketch p(t) vs. t.

b. What is the probability that a nucleus will decay during the first
second?

c. Find Pc(t), the probability of decaying by time t.

d. Sketch Pc(t) vs. t.

e. Write the equation ti = P−1
c (ri).

f. Generate 20 lifetimes ti.

g. What fraction of your nuclei have decayed during the first second?
How does this answer compare with part (b)?
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3. The cumulative probability function for a set of variables x is given by
this graph:

x

1.0

1.0

0.5

0.5

P (x)c

a. Describe the distribution of the resulting data generated in the in-
terval 0 ≤ x ≤ 0.5. Use graphical methods suggested by Section
4a.

b. Repeat for the interval 0.5 ≤ x ≤ 1.

c. How do the distributions of part (a) and (b) differ?

d. Graph the probability density function for this data.

e. Write the equation for the normalized probability function in four
regions: x < 0, 0 ≤ x ≤ 0.5, 0.5 ≤ x ≤ 1.0 and x > 1.0.

Brief Answers:

1. a. C = 1/2

14
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b.

+1-1

p(x)

x

½

c. 1/2 or 50%

d. Pc(x) = 0 for x < −1

Pc(x) =
1

2
(x+ 1) for −1 < x < +1

Pc(x) = 1 for +1 < x

e.

+1

+1

-1

P (x)c

x

f. xi = 2ri − 1

g. The xi depend upon the ri generated. The distribution should look
relatively uniform on the interval −1 to +1. No points should lie
outside that interval.

h. The fraction depends upon the ri that occurred. Any value is pos-
sible, although something near 50% is most likely.
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2. a.
p(t)

t(s)

(s )-1

1 2 3

1

b. (1− e−1) = 0.63 or 63%

c. Pc(t) = 1− e(−t/1 s)

d.

t(s)

0.63

1 2 3

1

P (t)c

e. ti = (1 s)`n (1− ri)
−1

f. The ti depend upon the ri generated.

g. The fraction depends upon the ri that occurred. Any value is possi-
ble, although something near 63% is most likely. Very long lifetimes
should be infrequent.

3. a. A uniform distribution over the interval.

b. A uniform distribution over the interval.

c. The density (and therefore p(x)) for the interval 0.5 < x ≤ 1 is
three times that of the interval 0 ≤ x ≤ 0.5.

16
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d.
p(x)

0.5 1.0

3C

1C

e. The normalization requirement gives C = 1/2.
p(x) = 0 for x < 0.0
p(x) = 1/2 for 0.0 ≤ x ≤ 0.5
p(x) = 3/2 for 0.5 < x ≤ 1.0
p(x) = 0 for 1 < x > 1.0
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SPECIAL ASSISTANCE SUPPLEMENT

Hints for Problem Supplement:

1. a. Normalization means
∫ xµ
x`

p(x)dx = 1.

For this problem, this reduces to
∫ +1

−1
Cdx = 1.

c. The probability in a finite interval is
∫ x2

x1
p(x)dx.

d. Pc(x) =
∫ x

x`
p(x)dx. The integral must be evaluated three times, for

x in the three regions x < −1, −1 ≤ x ≤ +1, and x > +1. In each
case, x` = −∞.

f. Solve the equation Pc(x) = r for the variable x.

g. Generate 20 random numbers ri (or use tables), and plug each into
the equation of part (f).

2. a. The probability in a finite interval is
∫ t2
t1

p(t)dt with t1 = 0 , t2 = 1 s.
∫

e−axdx =
1

a
e−ax.

c. Pc(t) =
∫ t

0
p(t)dt

e. Solve the equation Pc(t) = r for t.

f. Generate 20 random numbers ri (or use tables), and plug each into
the equation of part (e).

3. a. Use equally spaced lines on the vertical axis, (e.g., use 20).

b. Use equally spaced lines on the vertical axis, (e.g., use 20). Compare
the spacing on the horizontal axis.

c. Compare the density of lines on the horizontal axis for the two
intervals.

d. Make sure your graph includes a numerical comparison of the den-
sities in each interval.

e. Normalization requires
∫ xu
x`

p(x)dx = 1. Does this area under your

p(x) vs. x curve equal one?

18
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MODEL EXAM

1. Given: p(x) = kx for: 0 < x < 2; p(x) = 0 otherwise

a. Use the normalization condition to find k.

b. Sketch p(x) vs. x.

c. What is the probability that x will occur in the range 0 < x < +1?

d. Find Pc(x) and sketch Pc(x) vs. x.

e. Generate 20 data points xi. Describe their distribution qualita-
tively.

2. The cumulative probability function for a set of variables x is given in
this sketch:

0.5

-2 -1 +1 +2

1.0

x

P (x)c

Describe qualitatively the nature of the distribution of the data gen-
erated.

3. Define or describe the “cumulative probability function.”

Brief Answers:

1. a. k = 1/2

b.

+1 +2

1.0

x

p(x)
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c. P (0 ≤ x ≤ 1) = 1/4
∫ 1

0

1

2
xdx =

1

4
x2|10 =

1

4

d. Pc(x) =
1

4
x2 for: 0 ≤ x ≤ 2

0.5

1 2

1.0

x

P (x)c

e. The density becomes increasingly higher as x increases from 0 to 2.
There are no points outside that interval.

2. Data points fall either in the interval −2 ≤ x ≤ −1 or 1 ≤ x ≤ 2.
They are uniformly distributed on each of those intervals, with the
same density on each.

3. The cumulative probability function Pc(x) is the probability that the
variable xi will occur somewhere in the interval from x` to x.

20


