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THE INTERFERENCE OF

TWO COHERENT WAVE SOURCES

by

William C. Lane
Michigan State University

1. Introduction

1a. Overview. The interference of waves is one of the most important
and useful phenomena in physics. Historically, interference effects helped
confirm the wave nature of light. The bending of sound and light waves
around obstacles and corners, the fundamental limitation of the resolving
power of optical instruments, the existence of “dead spots” in an audito-
rium or a living room, the appearance of colored rings in oil slicks, and the
non-reflective properties of thin-metal coatings on lenses are all examples
of interference and its related phenomenon, diffraction.

1b. “Coherent” Wave Sources. If two or more wave sources produce
waves of the same frequency and wavelength, with the same phase at the
same time at their respective origins, the sources are synchronized, or
“coherent.” As an illustration, think of an infinitely large swimming pool.
Out in the middle are two flat discs just under the surface of the water
and parallel to the surface. A rod is connected to each disc. The two rods
go straight up to an overhead crankshaft that causes the discs to move up
and down with the same phase, so they are coherent wave sources. They
move up and down with the same amplitude so they are equal sources
of waves. Given the frequency and amplitude of these two sources, along
with the distance between them, how can we predict and explain the
observed wave pattern at all points of the water’s surface? How can we
do the same for audio waves from multiple sources, or from reflections off
walls that can also be considered sources? This unit develops the basic
approach for solving such problems.

2. Rotating Phase Vectors

2a. Definition of a Phasor. To geometrically visualize the combi-
nation of disturbances from two or more coherent wave sources, we will
introduce the idea of an imaginary rotating phase vector, also called a
“phasor.”
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Figure 2. Two phasors of
different phase.

Consider a vector ~A1 lying in the x-y plane of a Cartesian coordinate
system, as illustrated in Fig. 1. The magnitude of ~A1 is simply A and
the vector makes an angle φ1 with the positive x-axis. If ~A1 is made to
rotate counterclockwise with angular velocity ω while its tail is fixed at
the origin, A1x will vary sinusoidally between values of A and −A. The
x-component of ~A1 can therefore represent the disturbance produced by
a wave at some fixed point in space if the magnitude A is the wave’s
amplitude, and if φ1 is the phase of the wave disturbance, i.e.

A1x = A cosφ1 = A cos (ωt+ kr1 + φ0) ,

where ω is both the angular frequency of the wave and the angular velocity
of the rotating vector, k is the wave number of the wave, and φ0 is the
phase constant. The distance from the wave’s source to the point of
disturbance is r1. Keep in mind that it is only the x-component of the
phasor that is physically meaningful. The y-component does not represent
any real quantity.

2b. The Phase Difference of Two Phasors. Now consider the dis-
turbance at the same point in space produced by another wave from a
wave source coherent with the first source. The second wave is identical
to the first wave, except it travels a different distance r2. The wave dis-
turbance at the point in question will have a different phase φ2 and be
represented by a function ξ = A cos (ωt+ kr2 + φ0), which can be associ-

ated with the x-component of another vector ~A2 as illustrated in Fig. 2.
Since the two vectors both rotate counterclockwise at the same angular

6
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two phasors

rate ω, the angular separation between the phasors remains constant, and
is given by:

δ = φ2 − φ1

= (ωt+ kr2 + φ0)− (ωt+ kr1 + φ0)

= k(r2 − r1) =
2π

λ
(r2 − r1).

Since δ is the difference between two phases, φ2 and φ1, it is given the
name “phase difference,” and is independent of time, as seen above. It
depends only on the “path difference,” r2−r1, which is the extra distance
that one wave travels relative to the other to reach the point in question.
Writing the path difference as ∆, the phase difference δ may be rewritten
as:

δ =

(

∆

λ

)

2π or δ =

(

∆

λ

)

360◦ (1)

depending on whether δ is expressed in radians or degrees. The phase
difference is interpreted as the fraction or multiple of a complete wave
oscillation that one wave has advanced relative to the other. As an ex-
ample, if λ is 9.0 meters and ∆ is 3.0 meters, δ is 120◦ or 2π/3 radians.
We say that the two wave disturbances are “out of phase” by 120◦ or
2π/3 radians. The fact that δ is independent of time means that ~A1 and
~A2 do not change direction relative to each other and may be combined
by vector addition to yield the net result of both wave disturbances.

2c. Vector Sum of the Rotating Phase Vectors. The combina-
tion of the disturbances produced by two waves, out of phase by a phase
difference δ, can be represented as a problem in the vector addition of
two phasors on a phasor diagram. The two phasors illustrated in Fig. 3
represent the disturbance at a fixed point in space produced by two waves
of equal amplitude originating from coherent sources. The magnitude of
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the phasors represents the amplitude of the waves, and the angle between
their directions represents the phase difference δ between the wave distur-
bances. The entire triangle of phasors is rotating counter-clockwise with
angular frequency ω. Fig. 3 is a “snapshot” taken of the diagram when
the phasor ~A1 is aligned with the positive x-axis. The vector sum of ~A1

and ~A2 , represented by ~A′, may be found by resolving the vectors into x-
and y-components:

A′

x = A1x +A2x = A+A cos δ

A′

y = A1y +A2y = 0 +A sin δ

The magnitude of A′ may be found by applying the Pythagorean theorem:

A′ =
[

A′2

x +A′2

y

]1/2

=
[

(A+A cos δ)2 + (A sin δ)2
]1/2

=
[

A2 + 2A2 cos δ +A2 cos2 δ +A2 sin2 δ
]1/2

=
[

2A2 + 2A2 cos δ
]1/2

where use has been made of the fact that: cos2 δ+sin2 δ = 1. We conclude
that:

A′ =
[

2A2(1 + cos δ)
]1/2

. (2)

The extension of this method to the addition of wave disturbances from
three or more coherent sources is conceptually a simple problem in vector
addition, although the algebraic result may not be as concise.1

3. Two Coherent Point Sources

3a. Representing the Spherical Waves. Given two coherent point
sources, each source will produce a spherical wave of the form:

ξ(r, t) = ξ0(r) cos (kr − ωt+ φ) .

We call these “spherical” waves because the crests and troughs of the
waves have the form of concentric outgoing spheres. Of course the waves
will become weaker with increasing distance from their sources, but we
have neglected this effect in the above equation. We really only care about

1The method is used to derive the angular sensitivity of a linear-array radio tele-
scope. See “The Interference of Many Coherent Sources: Radio Interferometry”
(MISN-0-231).
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the two waves at the receiver, and there the two waves have about the
same amplitudes if the receiver is at a large distance from the sources. We
will assume that this is true, that the amplitudes from the two sources
are equal in magnitude at the receiver, and that interference effects are
due to phase differences between the waves.

3b. The Amplitude of the Resulting Wave Disturbance. The
amplitude of the net wave disturbance of two spherical waves can be
expressed using Eq. (2) if we let A = ξ0 and A′ = ξ′0, where ξ

′

0 is the am-
plitude of the net wave disturbance. Using another trigonometric identity,
2 cos2 (δ/2) = 1 + cos δ, Eq. (2) becomes:

A′ =

[

2A2

(

2 cos2
δ

2

)]1/2

=

[

4A2 cos2
δ

2

]1/2

so,

ξ′0 = 2ξ0 cos
δ

2
.

Thus when cos(δ/2) is zero, the amplitude of the net wave dis-
turbance is zero. This situation is called “destructive interference.”
When cos (δ/2) takes its maximum value of ±1, the net wave distur-
bance has an amplitude twice the size of either individual wave distur-
bance. This situation is called “constructive interference.” For cases
where 0 < | cos (δ/2)| < 1, the interference is neither totally destructive
nor totally constructive. Thus the interference pattern consists of varia-
tions in the wave disturbance from points where the amplitude is doubled,
called “maxima,” to points where the amplitude is zero, called “minima.”

3c. The Intensity of the Net Wave Disturbance. In a previous
module, we have seen that the intensity of a wave is proportional to
the square of its amplitude.2 From Fig. 3 we can see that the net wave
disturbance at a given point in space has a phase of (ωt+ δ/2), assuming
that the figure is a snapshot of the rotating phasors at time t = 0. Thus
the total expression for the net wave disturbance at a given point in space
as a function of time is:

ξ′(t) = 2ξ0 cos

(

δ

2

)

cos

(

ωt+
δ

2

)

.

2See “Intensity and Energy in Sound Waves” (MISN-0-203).
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The intensity of the wave disturbance as a function of time is therefore
expressed as:

I(δ, t) = 4I0 cos
2

(

δ

2

)

cos2
(

ωt+
δ

2

)

, (3)

where I0 is a combination of ξ2
0 and whatever constants of proportionality

are necessary to convert amplitude to intensity. According to Eq. (3), the
wave intensity at a given point fluctuates between its peak value and
zero with frequency ω/(2π), unless the intensity is always zero due to
the cos2 (δ/2) factor. Typically such fluctuations occur too rapidly to be
detected, so it is the intensity “time-averaged” over a single period that is
of interest. It can be shown that the time-average of I(δt) results in the
replacement of the cos2 (ωt+ δ/2) factor in Eq. (3) with a factor of 1/2.3

Thus the average intensity, represented by I(δ), can by expressed as:

I(δ) = 2I0 cos
2

(

δ

2

)

. (4)

This quantity depends only on the phase difference δ, which in turn de-
pends only on the path difference ∆.

3d. Conditions for Maximum and Minimum Intensity. As we
have seen, the quantity which determines the amount of interference that
occurs when combining wave disturbances from two equal coherent sources
is the phase difference δ. The intensity of the net wave disturbance will be
zero when cos2 (δ/2) is zero. This occurs when δ is 180◦ or π radians, and
when δ is 180◦ plus any integer multiple of 360◦, i.e. when δ = 2π(n +
1/2) radians or δ = 360◦(n + 1/2), where n can take the possible values
0, 1, 2, . . .4 Similarly, the intensity is maximized when cos2 (δ/2) = 1.
A few moments consideration reveal that this occurs when δ is 0◦, 360◦,
or any integer multiple of 360◦, i.e. δ = 2πn radians or δ = (360◦)n for
n = 0, 1, 2, . . .. Thus to summarize, the intensity of the wave disturbance
is maximized or minimized according to the following conditions:

δ =















2πn, for maxima

2π

(

n+
1

2

)

, for minima















n = 0, 1, 2, 3, . . . (5)

Alternatively we can express the conditions in terms of the path difference
∆, using the relationship between δ and ∆ given in Eq. (1). Using this

3See Appendix: Time-Averaged Intensities.
4You should take a moment and convince yourself that these values of δ do indeed

produce a zero value for cos (δ/2).
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Figure 4. A schematic diagram of a two-source experiment.

relationship, the interference conditions may be written as:

∆ =















nλ, for maxima

(

n+
1

2

)

λ, for minima















n = 0, 1, 2, 3, . . . (6)

where the path difference ∆ is given by:

∆ = r2 − r1

where r1 and r2 are the distances traveled by waves 1 and 2 respectively.

3e. Calculating the Path Difference. Our problem has now re-
duced to calculating the path difference for the particular situation we are
involved with. This is essentially a problem of geometry and will be dif-
ferent for each situation. Many well known interfering systems have been
worked out in detail by physicists and mathematicians over the years. As
an example, such a system is discussed in the next section. However you
should realize that Eqs. (4) -(6) are the principal results of our derivations
and constitute the real physics content of this module.

4. A Two-Source Experiment

4a. Coherent Sources are the Key. An absolutely essential require-
ment for interference to be observed is the availability of coherent sources
of waves. By using two small coherent sources, separated by distance d
(measured from the center of each source), an interference pattern can

11
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Figure 5. The calculation of the path difference for parallel
path distances.

be observed with a receiver a distance L meters away from and moving
parallel to the plane of the two sources (see Fig. 4).

4b. An Approximation For the Path Difference. Here is an ap-
proximation sometimes used to compute the path difference of any two
waves that combine at a receiver. If L is very much larger than either d
or λ, the two path distances, r1 and r2 are essentially parallel. Thus as
can be seen in Fig. 5, the path difference is simply:

∆ = r2 − r1 ' d sin θ for LÀ d , (7)

where θ is the “angular position” of the point P on the screen where
the waves are combining. Combining this geometrical expression for the
path difference of two waves with the criteria for interference maxima and
minima, we obtain the result:

d sin θn =















nλ, for maxima

(

n+
1

2

)

λ, for minima















n = 0, 1, 2, . . .

where θn is the angular position of the nth maximum or minimum. Re-
member that Eq. (7) is an approximation, good only if LÀ d. The exact
path difference will depart from the one calculated using Eq. (7) if d be-
comes comparable to L, resulting in errors in the predicted positions of
the maxima and minima.

4c. Positions of Maxima and Minima. For fixed source separation
d and wavelength λ, the angular positions of the maxima and minima de-
pends only on the value of n. The value of n determines the “interference

12
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n maximumth

x : position of

central maximum
0

L

q

d

Figure 6. The position of maxima for the two-source ex-
periment.

order” of maxima and minima at the receiver. For n = 0, there is only
one angle at which there is a maximum; at θ = 0. This maximum is called
the “central maximum” and lies on the perpendicular bisector of the line
connecting the sources (see Fig. 6). There is a minimum on either side of
the central maximum at the angular positions θ = ± sin−1 (λ/2d). Fur-
ther maxima and minima appear along the receiver-line at larger angles.
These are referred to as the “nth order” maxima and minima, correspond-
ing to the number of complete wavelengths in the path difference. Figure 7
shows a graph of intensity as a function of phase difference, corresponding
to a form of Eq. (4) suitably modified to ignore any r−2 dependence of the
amplitude. The maxima and minima are evenly spaced, characteristic of a
cosine-squared function. We could equally well have expressed the inten-
sity as a function of angular or even linear position along the receiver-line,
using the relationship between phase difference and path difference and
some simple geometry.

I( )d

0-2p 2p 4p-4p
d

Figure 7. The intensity as a function of phase difference
for the two-source experiment.
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x

Figure 8. Two overlapping interference patterns.

4d. Overlapping Orders of Interference. If the two sources are
producing different wavelengths, we obtain two separate interference pat-
terns superimposed on oneanother. Since the path difference from the
source-line to the receiver-line is zero for all wavelengths, the central
maxima for both patterns coincide for all wavelengths. However the po-
sitions and spacings of other maxima depend on the wavelength, λ, of
the waves that are interfering. As the interference order increases, the
maxima corresponding to the longer of the two wavelengths are located
at greater angular positions from the central maximum than the maxima
corresponding to the shorter wavelength. Eventually, the nth maximum of
the longer wavelength will overlap the (n+ 1)th maximum of the shorter
wavelength. This is known as “overlapping orders of interference.” In
Fig. 8 two interference patterns are present in which the n = 3 maxima
of one pattern occurs at the same position as the n = 2 maxima of the
other. The difference between a wavelength λ and another, longer wave-
length λ′ whose nth order maximum coincides with the (n + 1)th order
maximum of the shorter wavelength is called the “free spectral range” of
wavelength λ. This quantity defines the range of wavelengths that can
produce interference maxima for an order n without overlapping maxima
from other interference orders.
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Glossary

• central maximum: the intensity peak in the interference pattern
produced by two or more coherent wave sources that corresponds to a
combination of waves that have all traveled the same distance, i.e. the
path difference is zero.

• coherent wave sources: wave sources that produce waves of the
same frequency and wavelength, with the same phase at the same time
at their respective origins. Also referred to as “synchronized” wave
sources.

• constructive interference: a combination of two or more wave
disturbances at a particular point in space where the net wave intensity
is greater than the intensity of any of the individual wave disturbances.

• destructive interference: a combination of two or more wave dis-
turbances at a particular point in space where the net wave intensity is
less than the intensity of any of the individual wave disturbances.

• free spectral range: the range of wavelengths above a given wave-
length that can produce interference maxima of a given order that do
not overlap maxima of another order of interference.

• interference pattern: a spatial variation in the net intensity of the
combined wave disturbance due to two or more coherent sources of
waves.

• interference order: the number of complete wavelengths in the path
difference between waves from two successive coherent wave sources
that combine at a point in space to form an interference maximum.
This number is used to count the maxima, e.g. the third order maxima
are the third intensity peaks in the interference pattern on either side
of the central maximum.

• maxima: points of total constructive interference, where the intensity
of the interference pattern is at its greatest. These points occur when
the wave disturbances from the various coherent sources present are
completely in phase.

• minima: points of destructive interference, where the intensity of
the interference pattern is at its weakest. These points occur when the
phase difference of the individual wave disturbances results in a net
disturbance of minimal amplitude.

15
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• path difference: the difference in the distance that two waves from
successive coherent wave sources travel to reach a given point in space
where the wave disturbances combine.

• phase difference: the difference in the phase of two wave distur-
bances that combine at a given point in space. The phase difference is
related to the path difference through the wavelength of the wave.

• phasor: a fictitious vector that rotates in an imaginary plane and
whose component in the x-direction may be used to represent the dis-
turbance produced by a wave at a given point in space. The length of
the phasor represents the amplitude of the disturbance and the angle
the phasor makes with the x-axis represents the phase of the distur-
bance.

Time-Averaged Intensities

Only for Those Interested. The intensity of the net wave distur-
bance produced by two or more coherent wave sources may be written
as:

I(~r, t) = I(~r) cos2 (ωt + φ)

where all spatial coordinate dependencies are included in the time-
independent factor I(~r). Since the maximum value of cos2 θ is 1 and
its minimum value is zero, the intensity at a fixed value of ~r oscillates
back and forth between its peak value of I(~r) and its minimum value of
zero. The angular frequency of this oscillation is ω (see Fig. 9). These
fluctuations are usually too rapid to be easily measured, so measurements
are made of the time-averaged intensity.

The long term time-average is the same as the average over one wave
period, since all wave periods are duplicates of each other, so we need only
calculate the average over one period. The time-average of the intensity
is denoted Iav(~r) and is defined by:

Iav(~r) =
1

T

∫ T

0

I(~r, t) dt =
1

T

∫ T

0

I(~r) cos2 (ωt+ φ) dt,

where T = 2π/ω, which is one period of the wave oscillation. For radio
waves, one period is in the region of microseconds (10−6 s).

16
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Figure 9. The variation in wave intensity as a function of
time at a given point in space at which interference occurs.
The time origin was arbitrarily chosen to coincide with an
intensity peak.

If we let ωt + φ = x so ωdt = dx, and use ωT = 2π, the integral
assumes this form:

Iav =
I(~r)

2π

∫ 2π+φ

φ

cos2 x dx =
I(~r)

2π

∫ 2π

0

cos2 x dx

where we have used the fact that the integral over any one period of extent
T is the same as the integral over any other period of extent T .

We now use the fact that the integral of cos2 over a complete period
is exactly the same as the integral of sin2 over a complete period (one
looks just like the other, on a graph, but shifted.) Then we can rewrite
the integral over cos2 as half the integral over the sum of the sin2 plus
the cos2. However, the sum of those two quantities is just 1, so we get:

Iav =
I(~r)

2π

1

2

∫ 2π

0

1 dx =
1

2
I(~r).

Thus the time-average of an intensity varying as cos2(ωt + φ) is one-half
the peak intensity. Of course the same result holds if the time dependence
is sin2 (ωt + φ).
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PROBLEM SUPPLEMENT

Problem 8 also occurs in this module’s Model Exam.

1.

1

2

3.0 m
AMP

P

vs = speed of sound = 3.30 x 102 m/s

12.0 m

10.0 m

Two identical speakers are connected to the left and right channel
output of a stereo amplifier. A single-frequency tone, ν=660Hz, is
played over the system. A point P is 12.0m from speaker #1 and
10.0m from speaker #2.

a. Assuming the speakers are properly connected to the amplifier, i.e.
“in phase,” they constitute two coherent sources of sound waves. Is
the interference occurring at point P constructive or destructive?

b. By reversing the connections on one of the speakers, the speakers
are 180◦ “out of phase”: when speaker #1 is producing a wave
“crest,” speaker #2 is producing a wave “trough.” Describe the
type of interference now taking place at point P .

2. The wave disturbances, at a particular point in space, produced by
two wave sources, are given by the equations:

ξ1(r1, t) = ξ0 sin(kr1 + ωt+ φ1)

ξ2(r2, t) = ξ0 sin(kr2 + ωt+ φ2)

The sources are coherent if the frequencies are the same (they are)
and if the phase constants are the same, i.e. φ1 = φ2. Suppose that
φ1 = φ2 = −π/2. This means that, at t = 0 and r1 = r2 = 0:

ξ1(0, 0) = ξ2(0, 0) = ξ0 sin(−π/2) = −ξ0

which means that a wave “trough” is leaving each source. Sketch ξ1,
ξ2 and the net wave disturbance, ξ = ξ1 + ξ2, as functions of ωt when:

18
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a. r1 = λ/4, r2 = 3λ/4

b. r1 = λ/4, r2 = 5λ/4

c. r1 = λ/4, r2 = λ. Characterize the type of interference for each
situation.

3. A point in space is 45.0meters from one wave source and 45.4meters
from another wave source. The two wave sources are equal and
coherent, and produce waves of frequency 165Hz and wavelength
2.00meters. Use the phasor method to graphically compute the net
wave intensity at the given point in terms of the intensity of either in-
dividual wave. Include an accurate phasor diagram constructed with a
ruler and a protractor and measure the length of the resultant with the
ruler. Compare your graphically obtained answer to the one obtained
by using Eq. (1) from the module text, assuming that r = r0.

4.

y = L

y

r1

r2
q

-x0 x0

d

P

Two equal coherent wave sources are located at (x0,0) and (−x0,0),
separated by a distance d. Using geometry and the condition for con-
structive interference, derive a formula for the exact positions, x, of
interference maxima along the line y = L. Use no approximations.

5. Derive the result of Problem 4 a different way by noting that the
constructive interference condition, r1−r2 = nλ, where nλ is a constant
for a given n, is the equation of an hyperbola (actually a family of
hyperbolas, since n=0, 1, 2,. . . ). The Cartesian coordinate equation
of an hyperbola, centered at the origin with foci at x0 and −x0, is:

x2

a2
−
y2

b2
= 1,
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where a and b are the semi-major and semi-minor axes of the hyper-
bola. In terms of r1 and r2 an hyperbola can be written:

r1 − r2 = 2a

so a = nλ/2. Finally the relation x0 = (a2 + b2)1/2 defines b, given a
and x0. Use the above information to solve for the positions x where
the hyperbolas intersect the line y = L. These are the locations of in-
terference maxima along y = L. Note that the same type of derivation
could be carried out to locate interference minima using the relation:

r1 − r2 =

(

n+
1

2

)

λ, n = 0, 1, 2 . . .

6. Repeat the derivation of Problem 4 assuming that LÀ dÀ λ, and by
dropping negligibly small terms, derive the large-distance result:

d sin θ = nλ. Help: [S-2]

7. In the two-source interference pattern, maxima and minima are deter-
mined by the equations:

d sin θn =















nλ, for maxima

(

n+
1

2

)

λ, for minima















n = 0, 1, 2, . . .

with the condition that LÀ dÀ λ (see diagram below). Thus for rea-
sonably small n, sin θ ¿ 1, so sin θ ≈ tan θ ≈ θ, where θ is in radians.
Use these relations plus the basic geometrical setup below to determine
the spacing between adjacent maxima and between adjacent minima.

xn : position of

n maximumth

x : position of

central maximum
0

L

q

d

20
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8. Consider two equal coherent wave sources with wavelength λ = 5.86m,
located at x = ±4.00m, y = 0.

a. Determine whether the amount of wave disturbance at the point
x0 = 8.00m, y0 = 6.93m is a minimum or a maximum. Draw
a rough sketch of the geometrical layout and show all the steps
involved in obtaining the answer.

b. Sketch a rough graph of the wave disturbance at the point x1 =
1.00m, y1 = 3.00m as a function of time. Make t = 0 be the time
at which a wave crest from the source at x = −4.00m, y = 0 arrives
at the point (x1,y1). Also show on the graph the disturbance which
each source alone would have produced.

c. Locate a point of minimum intensity along the line y2 = 3.00m
if the two sources are located as above but have wavelengths of
λ = 2.00m. Show all necessary reasoning.

Brief Answers:

1. a. constructive interference

b. destructive interference

2. a. Total Destructive Interference

x

wt

x x1 2+

x1

x2

b. Total Constructive Interference
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x

wt

x x1 2+

x1, x2

c. “Intermediate” Interference Help: [S-3]

x

wt

x x1 2+

x1
x2

3. By formal calculation: I = 1.309 I0

A

A0

A0

72°

4.

xn = ±

(

nλ

2

)











1 +
L2

(

d

2

)2

−

(

nλ

2

)2











1/2

Help: [S-1]
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5. Same as Answer 4.

6. d sin θ = nλ.

7. ∆x = λL/d for adjacent maxima; ∆x = λL/d for adjacent minima.

8. a. Maximum

b. The wave from (-4.00m,0) will be slightly behind the wave from
(+4.00m,0) hence:

x resultant (observed)

disturbance

from (+4,0)from (-4,0)

t

c. x = ±0.63m are the closest minima to the y-axis. Of course there
are other minima further out. If you get an answer other than
the one given, substitute your answer into your original expressions
for the two paths. Then either: (i) their difference is not the half
wavelength it should be so your algebra was wrong; or (ii) your
original expressions were wrong.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 4)

r1−r2 = nλ, where r1 and r2 are defined in terms of somewhat unwieldy
square roots. Be sure to move r2 to the other side of the equation before
squaring to solve for x, i.e.

r21 = (r2 + nλ)2 = r22 + 2nλr2 + (nλ)2.

Substituting the expressions for r2
1 and r

2
2 (leaving r2 as is, temporarily)

several terms cancel. You can then isolate r2 on one side and square
again, then solve for x.

S-2 (from PS-problem 6)

Somewhere in your derivation you should get a term similar to:

x2

[

d2

n2λ2
− 1

]

= L2 +

(

d

2

)2

−

(

nλ

2

)2

.

For LÀ dÀ λ, the 2nd and 3rd terms of the right side of this equation
are negligible, particularly after squaring each term. To convince your
self, substitute some typical numbers: L = 10m, d = 0.1mm, λ =
500 nm for n = 1 (any reasonable low value of n will do). Therefore
dropping these two terms and noting that x = L tan θ exactly, and that

1 + tan2 θ = sec2θ,

where sec θ = 1/ cos θ, the derivation can easily be finished.

S-3 (from PS-problem 2c)

The curves plotted represent:

ξ1 = ξ0 sin(ωt)

ξ1 = ξ0 sin(ωt+ 3π/2)

= ξ0 sin(ωt− π/2).

Note that one must use: k = 2π/λ.
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. Consider two equal coherent wave sources with wavelength λ = 5.86m,
located at x = ±4.00m, y = 0.

a. Determine whether the amount of wave disturbance at the point
x0 = 8.00m, y0 = 6.93m is a minimum or a maximum. Draw
a rough sketch of the geometrical layout and show all the steps
involved in obtaining the answer.

b. Sketch a rough graph of the wave disturbance at the point x1 =
1.00m, y1 = 3.00m as a function of time. Make t = 0 be the time
at which a wave crest from the source at x = −4.00m, y = 0 arrives
at the point (x1, y1). Also show on the graph the disturbance which
each source alone would have produced.

c. Locate a point of minimum intensity along the line y2 = 3.00m
if the two sources are located as above but have wavelengths of
λ = 2.00m. Show all necessary reasoning.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 8.
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