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INTENSITY AND ENERGY IN SOUND WAVES

by

William C. Lane, J.Kovacs and O. McHarris,
Michigan State University and Lansing Community

College

1. Introduction

In a previous module we have seen that sound (acoustic) waves are
the result of periodic disturbances of an elastic medium.1 These distur-
bances may be represented by variations in the local pressure of a region
in the medium (compressions and rarefactions) or by the displacement of
portions of the medium from their equilibrium position. However, this
displacement is in the form of a simple harmonic oscillation, whether it
be a transverse displacement as with waves on a stretched string or a
longitudinal displacement as with sound waves in a gas. Either way there
is no net movement of matter. It would seem appropriate then to ask
what it is that is “traveling” when a traveling wave passes through a
medium.

2. One-Dimensional Elastic Waves

2a. Energy is What is Propagated. When a one-dimensional travel-
ing wave propagates through an elastic medium, the wave carries energy
in the direction that the wave travels. This energy is the kinetic and
potential energy of the deformation of the elastic medium. The total me-
chanical energy of an infinitesimal mass element dm in the elastic medium
is

dE =
1

2
ω2ξ20 dm , (1)

where ω is the angular frequency of the wave and ξ0 is the displacement
amplitude of the wave.2 Depending on the geometry of the medium this
energy may be expressed as one of several energy densities. For a stretched
wire of linear mass density µ, the mass element dm may be expressed as:

dm = µdx . (2)

1See “Sound Waves and Small Transverse Waves on a String” (MISN-0-202).
2For a detailed derivation of this relation, see the Appendix.
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A

dx

Figure 1. An infinitesimal
volume element of an elas-
tic medium of constant cross-
sectional area.

Substituting this expression for dm into Eq. (1) and dividing by dx,3 we
may define a linear energy density E`:

E` =
dE

dx
=
1

2
µω2ξ20 . (3)

Similarly, for energy propagating through a three-dimensional elastic
medium of constant cross-sectional area, such as a solid rod or a column
of gas, a volume energy density Ev may be defined as

Ev =
dE

dV
=
1

2
ρω2ξ20 , (4)

where ρ is the volume density of the elastic medium.

2b. Power is Required to Maintain a Train of Waves. For a
continuous series of sinusoidal pulses, called a “wave train,” to be main-
tained in an elastic medium, the energy that propagates in the medium
must be supplied by some external agent. The rate at which this energy
is supplied is the “power” of the wave source, defined as

P =
dE

dt
. (5)

For a transverse wavetrain propagating on a stretched wire, we may use
the chain-rule of differential calculus to express Eq. (5) as

P =
dE

dt
=
dE

dx

dx

dt
= E`v , (6)

or

P =
1

2
µω2ξ20v , (7)

where v = (T/µ)1/2 is the speed with which energy propagates along the
wire, the wave speed. A similar expression may be derived for a wave

3See “Sound Waves and Small Transverse Waves on a String” (MISN-0-202).
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MISN-0-203 3

traveling through a three-dimensional medium of constant cross-sectional
area. If an infinitesimal volume element dV is chosen with cross-sectional
area A and thickness dx, where the x-direction is chosen parallel to the
direction of wave propagation, then dV = Adx. Thus

P =
dE

dt
=
dE

dx

dx

dt
=
dE

dV

dx

dt
A ,

so:
P = Ev Av , (8)

or

P =
1

2
ρω2ξ20Av , (9)

where v = (Y/ρ)1/2 for longitudinal waves on a solid rod or v = (K/ρ0)
1/2

for longitudinal waves in a column of gas.

2c. Definition of Wave Intensity. For cases of a one-dimensional
wave traveling in a three-dimensional medium of constant cross-sectional
area, an important quantity called the “wave intensity” may be defined
as the power per unit cross-sectional area, I:

I =
P

A
. (10)

Substituting Eq. (9) into Eq. (10), the intensity of a one-dimensional wave
propagating in an elastic medium of constant cross-sectional area may be
written as:

I =
1

2
ρω2ξ20v , (11)

which is constant for waves of given amplitude and frequency. Intensity
is the physical quantity which, for a sound wave, roughly corresponds to
the “loudness” or “softness” of the sound. Since the MKS unit power is
the watt (W), the MKS unit of intensity is the watt per square meter
(W/m2).

2d. The Intensity Level of Sound. Because the range of intensities
of audible sounds is so wide, sound intensities are often expressed using a
logarithmic scale, referred to as the “intensity level.” Intensity levels are
determined using the following equation:

I( db) = 10 log

(

I

Iref

)

, (12)

where I is the intensity of interest, Iref is a reference intensity, and I( db)
is the intensity level of the intensity I in units of “decibels,” abbreviated
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“db.” For sound waves in air, Iref has arbitrarily been chosen to be
10−12W/m2. A list of typical sounds and their corresponding intensities
and intensity levels are shown in Table 1.

Table 1. The Intensities of Some Sounds.

RELATIVE

SOUND INTENSITY INTENSITY

(W/m2) (db)

Threshold of hearing 10−12 0

Rustling leaves 10−10 20

Talking (at 3 ft.) 10−8 40

Noisy Office or Store 10−6 60

Elevated train 10−4 80

Subway car 10−2 100

Threshold of pain 1 120

3. Plane Waves

3a. Definition of a Plane Wave. A one-dimensional wave for which
the wave disturbance is distributed uniformly over a planar surface (either
finite or infinite), is called a “plane wave.” If the surface is of finite
extent, the plane wave is said to be “collimated.” The wave is still one-
dimensional as long as it travels in a single direction. Figure 2a is an
illustration of how we visualize a plane wave as a series of parallel plane
surfaces, called “wave fronts” moving in the direction indicated. A wave

a) b)

l l l

Figure 2. An illustration of a plane wave: a) oblique view;
b) cross-sectional view.
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front is a surface over which the wave disturbance has the same phase,
i.e. for a plane wave traveling in the x-direction:

φ = kx− ωt+ φ0 = constant . (13)

Figure 2b shows a cross-sectional view of the wave fronts of a plane wave.
We typically draw such a sketch with the wavefronts one wavelength apart,
so that they are all crests, or all troughs, or any other given wave distur-
bance.

3b. The Wave Vector. In order to describe a plane wave propagating
in any direction, we will define a quantity called the “wave vector.” The
wave vector, symbolized by ~k, is a quantity whose magnitude is the wave
number, k, of the wave, and whose direction is the direction of propagation
of the wave.4 Using the wave vector we may define the phase of a plane
wave as:

φ = ~k · ~r − ωt+ φ0 , (14)

where ~r is the position vector of a point on a particular wave front with
respect to a specified coordinate system. Thus the wave function for a
plane wave may be written as:

ξ = ξ0 sin(~k · ~r − ωt+ φ0) . (15)

3c. The Intensity of a Plane Wave. The intensity of a plane wave
is defined as the power propagated per unit area of wave front. Since
the power is distributed uniformly over the wave front, the intensity is
constant for plane waves of given amplitude, frequency, and wave speed.
Thus one-dimensional waves travelling in an elastic medium of constant
cross-sectional area are examples of collimated plane waves, and the rela-
tions derived for the energy density and the intensity of these waves are
applicable to plane waves in general. Note that if the wave front of the
plane wave is of infinite extent, the total power propagating across its
surface is also infinite, although the energy density and intensity are not.
However, for systems of physical interest, only a finite portion of the wave
front impinges on a system capable of detecting the power propagated,
so the power detected is finite. Furthermore, the concept of a plane wave
front of infinite area is usually an idealized approximation.

9

MISN-0-203 6

a) b)

Figure 3. (a) A spherical wave propagating outward; (b) a
spherical wave propagating inward.

4. Spherical Waves

4a. Wave Front of a Spherical Wave. Another type of wave fre-
quently encountered is the “spherical wave.” In contrast to a plane wave,
the wave fronts of a spherical wave are concentric spherical surfaces. The
surfaces travel radially outward or inward, depending on the sign of the
frequency term in the phase of the wave function (see Fig. 3).

4b. Intensity of a Spherical Wave. The intensity of a spherical
wave is defined as the power propagated per unit area of wave front, just
as for a plane wave. However, the power and energy are distributed over
a spherical wave front of area 4πr2. Since each wave front is expanding
radially outward (or contracting inward) as the wave propagates, the in-
tensity varies as r−2 for a spherical wave. Assuming the power output of
the wave source, P0, is a constant, the intensity of the spherical wave is
given by

I =
P0

4πr2
. (16)

If the intensity is known at a specific radial distance r0, then since P0 =
I04πr

2
0, the intensity at any other radial distance r may be expressed as:

I = I0

(r0
r

)2

. (17)

4c. The Wave Function of a Spherical Wave. By solving the wave
equation for a wave source of spherical symmetry, the wave function for

4Note: k = ω/v.
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a spherical wave can be shown to be:

ξ(r, t) = ξ0

(r0
r

)

sin(kr − ωt+ φ0) , (18)

where ξ0 and φ0 are determined from the boundary conditions.5 If we
consider the entire coefficient of the sine function to be the “amplitude,”
then we see that the amplitude of a spherical wave decays as r−1. Since
the wave intensity is proportional to the square of the wave amplitude,
for a spherical wave the intensity is:

I = βξ2
0

(r0
r

)2

. (19)

This expression is equivalent to Eq. (17) if I0 = βξ20 . The constant of
proportionality, β, depends on the specific medium through which the
wave travels and the physical nature of ξ0.

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and
Research, through Grant #SED 74-20088 to Michigan State Univer-
sity.

Glossary

• decibel: a unit of intensity on a logarithmic scale of “intensity level,”
abbreviated as “db.” An additive increase in the intensity level of 10 db
implies a multiplicative increase in the actual intensity by a factor of
10.

• plane wave: a one-dimensional wave traveling in a direction defined
by the wave vector ~k, whose surfaces of equal phase are parallel planes
of finite or infinite extent.

• spherical wave: a three-dimensional wave emanating from a wave
source of spherical symmetry, whose surfaces of equal phase are con-
centric spheres.

5Note that the actual value of φ0 will depend on whether a sine or a cosine function
is used.
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• wave intensity: the power propagated by the wave per unit area
perpendicular to the propagation direction; the units of intensity are
W/m2.

• wave front: a continuous surface of wave disturbances of the same
phase, such as a crest or a trough.

• wave vector: a vector whose magnitude is the wave number k and
whose direction is the direction of wave propagation.

Energy Density of a 1D Elastic Wave

Only For Those Interested. To derive the energy density of a one-
dimensional elastic wave traveling in an elastic medium of constant cross-
sectional area, consider an infinitesimal volume element of the medium.
The total energy in this element is:

dE = dEK + dEP (20)

where dEK is the kinetic energy due to the motion of the infinitesimal
volume element and dEP is the potential energy of the element’s displace-
ment from equilibrium. If the infinitesimal volume element has mass dm,
the kinetic energy may be represented as

dEK =
1

2
ξ̇2 dm (21)

where ξ̇ = ∂ξ/∂t, the speed of the medium’s deformation. For a one-
dimensional sinusoidal wave, ξ may be represented as:

ξ(x, t) = ξ0 sin(kx− ωt+ φ0) (22)

so
ξ̇ = ±ωξ0 cos(kx− ωt+ φ0). (23)

The potential energy of the mass element may be represented as:

dEP =
1

2
ξ2 dk (24)

where dk is the elastic constant of the restoring force acting on the in-
finitesimal mass element. This force constant may be identified by ap-
plying Newton’s second law to the mass element. The force on the mass
element is given by:

dF = dm
∂2ξ

∂t2
= −ω2dmξ0 sin(kx− ωt+ φ0) = −ω

2dmξ. (25)
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dE

dEp

dEk

energy

time

Figure 4. The energy of a mass element dm in an elastic
medium, as a function of time, as a one-dimensional wave
passes by.

This result is a form of Hooke’s law, so the force constant must be

dk = ω2dm. (26)

Therefore the potential energy of the mass element is:

dEP =
1

2
ξ2ω2 dm =

1

2
dmω2ξ20 sin

2(kx− ωt+ φ0), (27)

and the kinetic energy of the mass element is:

dEK =
1

2
dmω2ξ20 cos

2(kx− ωt+ φ0). (28)

Since sin2 θ + cos2 θ = 1, the total energy of the mass element is:

dE =
1

2
ω2ξ20dm. (29)

The results of Eqs. (27) - (29) are illustrated in Fig. 4. You can see that
at a given point in the medium the energy oscillates between kinetic and
potential energy; yet the total energy remains constant, dependent only
on the mass of the infinitesimal element, the angular frequency of the
harmonic oscillation, and the amplitude of the wave displacement.
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PROBLEM SUPPLEMENT

Y (iron) = 2.06× 1011N/m2

ρ(iron) = 7.86× 103 kg/m3

Problems 4 and 5 also occur on this module’s Model Exam.

1.

q } x (x = 0)

x = 0

wave propagates

x

Consider a string of length L, massM (mass per unit length µ =M/L)
under tension T . Suppose the left end of the string is being moved
up and down (transversely) such that a sinusoidal wave, of angular
frequency ω and wave number k, travels away from this end along the
string.

a. What is the component of the applied force in the transverse di-
rection at any particular time, written in terms of the tension T in
the string and the angle θ the string makes with the string axis at
that time? The energy of motion of the particles on the string is
all transverse so that’s the direction of the component of the force
which provides this energy.

b. For small displacements ξ the angle θ will always be small such that
sin θ ≈ tan θ ≈ θ is a good approximation. Therefore, express your
answer to (a) in terms of the slope of the curve traced by the string
at the point where the driving force acts.

c. Write down the functional form of ξ(x,t) for a sinusoidal wave prop-
agating to the right.

d. Substitute this into your answer to (b). This tells you the time
dependence of the transverse force required to generate a traveling
sine wave to the right along the string.

14
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e. If this force displaces the point at the end of the string (at x = 0)
by an amount dξ, how much work is done by the agent exerting this
force?

f. Determine the amount of work done by this driving force during
one complete period of motion.

g. Find the average rate at which this work is done using the fact that,
for transverse waves on a stretched string, v =

√

T/µ. Express this
rate in terms of the mass density of the string.

2. Longitudinal sound waves propagate down a length of iron rod of cross-
sectional area 30 cm2. The average sound energy density distributed
throughout the volume of this iron rod is 4 J/m3.

a. How is this energy density distributed between kinetic energy of
oscillation (of the atoms of the rod) and potential energy?

b. What is the speed of sound along this rod?

c. What is the wave intensity along the rod?

d. What power must be supplied to one end of this rod to maintain
this energy density in the rod?

3. The intensity of a spherical sound wave emanating from a point source
is observed to be 4× 10−8W/m2 at a distance of one meter from the
source.

a. Find the intensity in decibels of the sound that reaches a point 10
meters from the source.

b. Find the total power supplied by the source.

c. What is the total energy per second crossing the sphere of radius 1
meter with the source at the center?

d. Repeat (c) for the sphere of 10 meters.

e. What is the intensity in decibels 100 meters from the source?

4. The differential equation satisfied by transverse waves along a stretched
string of mass M , length L, under tension T is, when the string is
aligned parallel to the x-direction:

∂2ξ(x, t)

∂t2
=
TL

M

∂2ξ(x, t)

∂x2
.

The string’s length is 10 meters, it has a mass of 5 grams, and it is
under a tension of 30 newtons. A sinusoidal source at one end of the

15
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string sends sinusoidal waves of wavelength 2 meters down the length
of the string. The power supplied by the driving oscillator is 3 watts.

a. What is the speed with which waves propagate along this string?

b. What is the amplitude of the transverse waves propagating along
the string?

5. A point source of sound emits 50,000 joules of sound energy every
20 seconds. At a distance 100 meters from the source, what is the in-
tensity of the sound (in decibels), if no energy is lost in the intervening
space?

Brief Answers:

1. a. Fy = −T sin θ Help: [S-3]

b. Fy = −T (∂ξ/∂x) at x = 0

c. ξ(x, t) = ξ0 sin(kx− ωt+ φ0)

d. Fy = −kTξ0 cos(ωt− φ0)

e. dW = Fydξ

f. W = ωTξ2
0π/v Help: [S-1]

g. P = ω2Tξ20/(2v) Help: [S-2]

2. a. Evenly distributed between kinetic and potential.

b. v = 5119m/s

c. I = 2.05× 104W/m2

d. 61.4 watts

3. a. 26 db

b. 5.03× 10−7 watts

c. 5.03× 10−7 watts

d. 5.03× 10−7 watts

e. 6 db

4. a. v = 245m/s.

b. ξ0 = 9millimeters.

5. 103 db.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-problem 1f)

Wone cycle =
∮

Fy dξ

= kTξ0
∮

cosωtd(ξ0 sinωt)

= kωTξ2
0

∫ 2π/ω

0
cos2(ωt) dt

= kTξ20
∫ 2π

0
cos2(ωt) d(ωt)

= kTξ20π

=
ω

v
Tξ20π

S-2 (from PS-problem 1g)

∆tone cycle = 2π/ω

S-3 (from PS-problem 1a)

See Module 202, Sect. 3b.
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MODEL EXAM

Iref = 10
−12W/m2

1. See Output Skills K1-K2 in this module’s ID Sheet. One or more of
these skills may be on the actual exam.

2. The differential equation satisfied by transverse waves along a stretched
string of mass M , length L, under tension T is, when the string is
aligned parallel to the x-direction:

∂2ξ(x, t)

∂t2
=
TL

M

∂2ξ(x, t)

∂x2
.

The string’s length is 10 meters, it has a mass of 5 grams, and it is
under a tension of 30 newtons. A sinusoidal source at one end of the
string sends sinusoidal waves of wavelength 2 meters down the length
of the string. The power supplied by the driving oscillator is 3 watts.

a. What is the speed with which waves propagate along this string?

b. What is the amplitude of the transverse waves propagating along
the string?

3. A point source of sound emits 50,000 joules of sound energy every
20 seconds. At a distance 100 meters from the source, what is the in-
tensity of the sound (in decibels), if no energy is lost in the intervening
space?

Brief Answers:

1. See this module’s text.

2. See Problem 4 in this module’s Problem Supplement.

3. See Problem 5 in this module’s Problem Supplement.
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