
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-202

SOUND WAVES AND

SMALL TRANSVERSE WAVES

ON A STRING

y

x x + xD

T

T

q

horizontal

line tangent

to string at x

segment

of string

horizontal

line tangent to

string at x + xD

q + D q

1

SOUND WAVES AND SMALL TRANSVERSE WAVES

ON A STRING

by

J. S.Kovacs and O.McHarris

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Introduction
a. The Wave Equation and its Solutions . . . . . . . . . . . . . . . . . . . . 1
b. Finding the Wave Equation for a Physical System . . . . . . . 1

3. Small Transverse Waves on a String
a. Geometrical Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
b. Net Force on a Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
c. Applying Newton’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . .3
d. Getting the Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
e. Physical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Longitudinal Waves on a Rod
a. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
b. Stress, Strain, Young’s Modulus . . . . . . . . . . . . . . . . . . . . . . . . . 4
c. Force on a Segment: Static Case . . . . . . . . . . . . . . . . . . . . . . . . . 5
d. Force on a Segment: Dynamic Case . . . . . . . . . . . . . . . . . . . . . 5
e. Applying Newton’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . .6

5. Longitudinal Waves In a Gas
a. Stress, Strain, Bulk Modulus of Elasticity . . . . . . . . . . . . . . . .7
b. The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c. Pressure, Density, and Heat Capacity Ratio . . . . . . . . . . . . . .7
d. Dependence on Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2



ID Sheet: MISN-0-202

Title: Sound Waves and Small Transverse Waves on a String

Author: J.Kovacs and Orilla McHarris, Lansing Community College

Version: 4/17/2002 Evaluation: Stage 0

Length: 1 hr; 20 pages

Input Skills:

1. Vocabulary: wavelength, amplitude, wave number, wave speed,
traveling wave, wave equation (MISN-0-201); Hooke’s law (MISN-
0-26).

2. State the one-dimensional differential wave equation and its trav-
eling wave solution (MISN-0-201).

Output Skills (Knowledge):

K1. Vocabulary: sound wave, longitudinal wave, transverse wave, com-
pressions, rarefactions, bulk modulus (of elasticity), Young’s mod-
ulus, stress, strain.

K2. Starting with Newton’s second law, derive the expression relating
the net force on an element of mass of a stretched string to the
transverse acceleration of that string. Comparing the resultant ex-
pression to the one-dimensional wave equation, find the expression
for the speed of a transverse wave in a stretched string.

K3. Determine the speed of the waves (in terms of the properties of
the medium), given the differential wave equations describing: (i)
transverse waves in a stretched string; (ii) longitudinal compres-
sional waves in a solid or a gas.

Output Skills (Rule Application):

R1. For a given harmonic (sinusoidal) disturbance write down the
equation representing the waveform and calculate the wavelength
and frequency of the wave for: (i) transverse waves in a stretched
string; and (ii) longitudinal compressional waves in a solid or a
gas.

R2. Given a transverse harmonic disturbance, determine the displace-
ment, speed, and acceleration of the waveform at any time in the
wave cycle.

3

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D.Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A.A. Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

c© 2002, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

4



MISN-0-202 1

SOUND WAVES AND

SMALL TRANSVERSE WAVES ON A STRING

by

J. S. Kovacs and O. McHarris

1. Overview

Many physical systems are described by the wave equation and its
solutions. By applying Newton’s second law, the wave equations are found
for transverse waves on a string, and longitudinal waves on a rod or in a
gas. The speed of each type of wave is then found by inspection of the
wave equation.

2. Introduction

2a. The Wave Equation and its Solutions. The solutions of the
equation:

∂2ξ

∂t2
= v2

∂2ξ

∂x2
, (1)

are waves of displacement ξ traveling at speed v in the positive and neg-
ative x-direction.1

2b. Finding the Wave Equation for a Physical System. Let us
look at appropriate physical systems, apply Newton’s second law, and see
that a wave equation results. For a physical displacement ξ we will use
Newton’s second law in the form:

F = ma = m
∂2ξ

∂t2
.

Then whenever the net force F on the system under study is proportional
to the displacement’s spatial “bending function,” ∂2ξ/∂x2, we will have
the wave equation, Eq. (1). The solution of this equation is the equation of
motion of the system. The resulting motion should be that of a traveling
wave and the velocity of this wave can be determined just by inspecting
the differential equation. As examples of this procedure we will examine
a transverse wave on a stretched string, a longitudinal wave in a rod of
solid material, and a longitudinal wave in a gas. In each of these cases
we will derive the correct differential equation for the system and then
determine the wave velocity by comparison to Eq. (1).

1See “The Wave Equation and Its Solutions” (MISN-0-201).
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Figure 1. Geometrical descriptors for the displacement y
of a small segment ∆x of a stretched string.

3. Small Transverse Waves on a String

3a. Geometrical Descriptions. Above is shown a very short length
∆x of a string that is vibrating transversely (in the figure, up and down).
The string is stretched along the x-axis and the wave propagates along it
in the x direction. However, the individual particles of the string move,
parallel to the y-axis, at right angles to the direction of the wave’s motion.
The equilibrium position of the string is at y = 0, and the displacement
y is assumed to be small, as are the angles θ and ∆θ.2

3b. Net Force on a Segment. Neglecting the force of gravity, the
two forces on the segment ∆x are the tension T in the string on the right
hand end (the tangent at that point) pulling the segment up and to the
right and the tension T in the string on the left hand end pulling it down
and to the left. Due to the shape of the wave, the tangents to the two
ends of the segment are at different angles to the x-axis. At the right
hand end of the segment:

Fy = T sin(θ +∆θ) and Fx = T cos(θ +∆θ) ,

while at the left hand end:

F ′
y = −T sin θ and F ′

x = −T cos θ .

2For small displacements the restoring force on the string varies linearly with dis-
placement and hence produces simple harmonic motion. This makes the motion of the
string easily soluble mathematically.
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Since both θ and ∆θ are small, cos θ and cos(θ+∆θ) are both essentially
equal to 1 and there is negligible net force in the x-direction.3 For small
θ, sin θ on the other hand is essentially equal to θ, and the net force in
the y-direction is:4

Fy = T ∆θ .

3c. Applying Newton’s Second Law. If the linear density (mass
per unit length) of a stretched string is µ, a segment with length ∆x has a
mass ∆m = µ∆x and a transverse acceleration a = ∂2y/∂t2 (see Fig. 1).
Notice that for “a” we must use partial derivatives of y with respect to
t since the displacement y is a function of both x and t. Application of
Newton’s second law then gives us (with F from the previous section):

T ∆θ = µ∆x∂2y/∂t2 .

This implies:

T
∆θ

∆x
= µ

∂2y

∂t2
. (2)

We can now let ∆x and ∆θ shrink until ∆θ/∆x becomes ∂θ/∂x so
Eq. (2) becomes:

T
∂θ

∂x
= µ

∂2y

∂t2
. (3)

3d. Getting the Wave Equation. For a wave equation, Eq. (1), we
need ∂2y/∂x2 rather than the ∂θ/∂x of Eq. (3). Let us therefore rewrite
∂θ/∂x in terms of y and x. These quantities are related by:

tan θ = slope of curve = ∂y/∂x .

Differentiating with respect to x gives us:

∂

∂x
tan θ =

∂

∂x

(

∂y

∂x

)

,

1

cos2 θ

∂θ

∂x
=

∂2y

∂x2
,

3cos θ = 1−
θ2

2!
+

θ4

4!
− . . .; For small θ, the θ2 and higher terms can be neglected.

4sin θ = θ −
θ3

3!
+

θ5

5!
− . . .
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where we now have the second derivative we need. Remembering that
cos θ ≈ 1 for small θ, we have finally:

∂2y

∂t2
=

T

µ

∂2y

∂x2
. (4)

This is the wave equation for any small traveling wave on a stretched
string. Comparing to Eq. (1) we see that the speed of the wave is:

v =
√

T/µ . (5)

3e. Physical Solutions. The wave equation contains symbols whose
values must come from the physical problem at hand. The wave’s speed
comes from the properties of the medium in which the wave propagates,
as illustrated in Eq. (5) with tension and mass-per-unit-length for a string.
The wave’s shape, whether sinusoidal or something else, and its frequency,
depend as well on the driving force (on the manner in which the string
is made to keep vibrating) and on the damping properties of the string.

4. Longitudinal Waves on a Rod

4a. Overview. Applying Hooke’s law and Newton’s second law to
longitudinal compression in a solid rod, we can derive the equation for
acoustic waves in the rod. Such a compression occurs when, for example,
a rod is struck on one end, displacing the individual particles of the rod
in the direction of the rod’s length and causing a displacement wave to
travel down the rod in the same direction as the motion of the particles.

4b. Stress, Strain, Young’s Modulus. In general, when a rod is
subjected to a force in the direction of its length and acting over its
cross section—when, for example, it is vertical and holds up the roadbed
of a bridge or some other weight suspended from its end—Hooke’s Law
applies. This law states, in general, that in an elastic medium:5

stress

strain
= constant , (6)

where stress is the applied force per unit cross sectional area and strain
is the rod’s fractional deformation due to the stress.

stress = F/A .

5Our rod will remain “elastic” as long as it is not stretched too much in proportion
to its length.
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Figure 2. Geometrical descrip-
tions for a rod undergoing longitu-
dinal compression and/or exten-
sion.

In the case of a rod, the stress causes a change in the length of the rod.
The strain is thus the fractional change in length. Writing L as the
original length of the rod and ∆L is its elongation due to the stress on it,
the strain is ∆L/L. For a rod, the “constant” of Eq. (6) is called Young’s
modulus and is designated by the letter Y ; it is a property of the material
of which the rod is made. Thus for elastic longitudinal deformations of
our rod:

Y = (F/A)/(∆L/L) ,

and hence:
F = Y A∆L/L .

4c. Force on a Segment: Static Case. In order to derive a wave
equation for a rod, let us analyze what happens to a small segment of the
rod. Consider a segment with unstretched length ∆x and cross section
A, where A is also the cross section for the rod as a whole (see Fig. 2).
In a static situation, such as that of a spring pulling on the end of the
rod, the force is constant along the rod, and the segment of length ∆x
is stretched by its proportionate amount ∆ξ such that the ∆ξ’s summed
over all the ∆x’s of the rod equals the total elongation ∆L. In this case,
Hooke’s law for the segment gives us:

F = Y A∆ξ/∆x .

We now let ∆x shrink until that expression becomes:

F = Y A
dξ

dx
. (7)

4d. Force on a Segment: Dynamic Case. When a wave is traveling
along the rod, the situation is not static and the forces at the two ends
of any particular segment are not equal. The acceleration of the segment
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at any particular time t is due to the net force on it at that time:

dFnet = F (x+ dx)− F (x)

=
dF

dx
dx

= Y A
d2ξ

dx2
dx. (fixed time) .

We must remember what ξ(x, t) is, though. It is the displacement, from
equilibrium, of the individual particles in the rod as the wave travels along
the rod. As such, it is a function of both x and t. Thus to get rid of the
“fixed time” label in Eq. (8) we can use partial derivatives:

dF = Y A
∂ξ

∂x
dx .

4e. Applying Newton’s Second Law. We apply Newton’s Second
Law to a small segment of a rod that has volume density ρ and cross-
sectional area A. The small segment has mass dm and length dx:

dm = ρ dV = ρAdx .

The acceleration of the rod particles at x and t is:

a(x, t) =
∂2ξ

∂t2
.

Then Newton’s second law, for the segment of length dx at x and t, gives
us:

Y A
∂2ξ

∂x2
dx = ρAdx

∂2ξ

∂t2
,

which can be written:
∂2ξ

∂t2
=

Y

ρ

∂2ξ

∂x2
. (8)

This is the wave equation so by comparison to Eq. (1) speed for a longi-
tudinal wave on a rod is:

v = (Y/ρ)1/2 . (9)
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5. Longitudinal Waves In a Gas

5a. Stress, Strain, Bulk Modulus of Elasticity. Longitudinal
waves in a gas, such as sound waves through the air, obey Hooke’s law:

stress

strain
= constant . (10)

This equation also applies to a long thin rod where a stress causes a
one-dimensional strain (a change in length). Actually, a more thorough
analysis of that case shows that the rod’s cross section decreases slightly
as the length increases: the rod’s volume stays approximately constant.
A gas does not act the same way at all since it is compressible and its
volume changes with pressure. Here the appropriate constant in Eq. (10)
is the gas’s bulk modulus of elasticity, K, usually defined by:6

K = −
dP

dV
V .

5b. The Wave Equation. The equation of motion for a volume ele-
ment of a gas is mathematically more complicated than that for a segment
of a rod. However, in advanced texts it is shown that the wave equation
for a longitudinal wave in a gas is like that for a longitudinal wave in a rod,
except that K replaces Y and the mass density is specifically designated
as that at equilibrium:

∂2ξ

∂t2
=

K

ρ0

∂2ξ

∂x2
. (11)

For a gas, then, the wave speed is

v =
√

K/ρ0 (12)

5c. Pressure, Density, and Heat Capacity Ratio. Using the def-
inition of K, we can write the wave velocity in terms of gas properties
that we have seen before. The first gas-related equation you are likely
to recall is the equation of state for an ideal gas,7 PV = nRT . This

6Some authors write K in terms of density rather than volume.
7“For an ideal gas, the simplest model of intermolecular forces is assumed: there

are no interactions between the molecules unless their centers happen to coincide,
in which case they bounce off one another like hard spheres, and the molecules are
assumed to be point masses. For such a model, the equation of state, that is, the
relation between the measurable quantities (pressure, volume, temperature), can be
derived in a straightforward way once temperature and average pressure are defined.”
(Quoted from Temperature And Pressure of an Ideal Gas: The Equation Of State,
MISN-0-157.)
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makes it look as if we could solve for P , differentiate with respect to V ,
and end up with a value for K. Historically, this was the first approach.
However, it gives the wrong value for the wave speed and the reason is
this: it implicitly assumes that the temperature T is constant. That is, it
assumes that as the wave travels through the gas, heating it in the wave-
peak compressions and cooling it in the wave-trough rarefactions, the gas
is able to instantaneously exchange heat with its surroundings and stay
at the same temperature. Actually, a wave usually travels through a gas
so rapidly that there is no time for heat transfer. Thus the appropriate
relationship is the one for adiabatic conditions,

P V γ = constant ,

where γ is the ratio of heat capacities:

γ =
Cp

Cv
.

Differentiating this equation gives us:

dP V γ + γ P V γ−1 dV = 0 .

Then:

V
dP

dV
= −γP ,

and hence:
K = γ P .

Thus the wave speed in a gas becomes

v = (γP/ρ0)
1/2 . (13)

5d. Dependence on Temperature. Starting from the expression for
wave speed as a function of pressure, Eq. (13), we can use the equation of
state of an ideal gas to find the speed as a function of temperature. That
is, we can substitute

PV = nRT

into Eq. (13) and get:

v =

(

γnRT

V ρ0

)1/2

=

(

γnRT

m

)1/2

.
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We can put this in a form useful for determining sound speeds in different
gases by writing it in terms of M = m/n, the mass of one mole of the
gas:

v =

(

γRT

M

)1/2

. (14)
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Glossary

• bulk modulus (of elasticity): the ratio of the increase in pressure
to the decrease in the fractional volume of a fluid.

• compressions: the portions of the phase of a longitudinal acoustical
wave when the pressure of the medium is higher than the equilibrium
pressure.

• longitudinal wave: a wave in which the wave displacement from
equilibrium is parallel to the wave velocity (example: sound waves).

• rarefactions: the portions of the phase of a longitudinal acoustical
wave when the pressure of the medium is lower than the equilibrium
pressure.

• sound wave: a longitudinal acoustical wave traveling through an
elastic medium.

• strain: the fractional deformation of the dimension or dimensions of
a material subjected to a stress. If only one dimension is relevant, the
strain is given by the ratio of the change in length to the undeformed
length. If the entire material volume is altered, the strain is given by
the ratio of the change in volume to the undeformed volume.

• stress: applied force per unit cross-sectional area. For a fluid this is
the same as pressure.
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• transverse wave: a wave in which the wave displacement from equi-
librium is perpendicular to the wave velocity (example: water waves).

• Young’s modulus: the ratio of stress to strain for a deformation of
length.
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PROBLEM SUPPLEMENT

T

µ

∂2ξ

∂x2
=

∂2ξ

∂t2
Y

ρ

∂2ξ

∂x2
=

∂2ξ

∂t2
γP

ρ0

∂2ξ

∂x2
=

∂2ξ

∂t2

Note 1. Work the following problems in order, completely finishing each
one successfully before going on to the next.

Note 2: Get appropriate velocity formulas by simply looking at the wave
equations shown above.

Note 3: Some of the Answers have references to help sequences in this
module’s Special Assistance Supplement.

1. A guitar string of length 2.00 ft has a mass of 0.700 grams. When
mounted on a guitar the string is placed under a tension of 20.0N.
Determine the speed of transverse waves traveling in the string when
plucked.

2. A stretched steel wire under a tension of 1.50 × 104 N is attached at
one end to an oscillator with a period of 4.00 × 10−4 sec. Given that
the diameter of the wire is 0.3572 cm and that the density of steel is
7.850×103 kg/m3, determine the speed of propagation, frequency, and
wavelength of transverse waves traveling along the wire. Write the
equation for the waveform of the wave.

3. In Westerns, the “Indians” frequently detected an approaching train by
placing their ears to the railroad track and listening to the transmitted
sound of the train wheels in contact with the track. Calculate the speed
of sound in the steel track, treating the problem as compressional waves
in a simple rod. Determine the speed of sound in air at 75 ◦F (23.9 ◦C).
How do the two speeds compare?

Steel: Air:
Y = 1.95× 1011 N/m2 γ = 1.4
ρ = 7.850× 103 kg/m3 M = 29.8 grams/mole

R = 8.31 J/(Kmole)

4. A copper and an aluminum rod, each of cross section 0.75 cm2, are
welded together end-on-end to form one continuous length of metal rod.
Longitudinal waves are excited in the copper rod by a vibrating source
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with a frequency of 675Hz. If the wavelength of longitudinal waves in
the copper portion of the rod is 5.25m, determine the wavelength of
the waves in the aluminum.

Copper: Aluminum:
Y = 11.2× 1010 N/m2 Y = 6.9× 1010 N/m2

ρ = 8.93 grams/cm3 ρ = 2.7 grams/cm3

5. Scuba divers must use exotic mixtures of gases instead of air when
diving to great depths in order to avoid nitrogen narcossis and oxygen
poisoning. Such breathing mixtures typically consist mainly of helium
as an “inert” gas, and a small amount of oxygen. However, when com-
municating with the surface, the divers’ voices sound high-pitched and
squeaky because sound travels faster in helium than in air (which is
mostly nitrogen). Calculate the frequency of “middle C” in an envi-
ronment of pure helium assuming the note is 256Hz in air. Note that
the wavelength is the same in both media since it depends only on the
geometry of the voice box producing the sound. Also, the temperature
is assumed to be the same in both environments.

Helium: Air:
γ = 5/4 γ = 7/5
M = 4.00 grams/mole M = 29.8 grams/mole

6. A stereo speaker cone is attached to a long tube in such a way as to
generate longitudinal waves traveling down the air-filled tube. The
speaker cone is made to oscillate harmonically as described by the
equation:

y = (0.010 cm) sin [(8.0× 102 π sec−1) t]

where y is the horizontal displacement of the speaker surface as
a function of time. Assuming the equilibrium pressure of the air
is atmospheric pressure, determine the speed of waves travelling in
the tube and write the equation for the waveform (for air, γ=1.4,
ρ0 = 1.33× 10−3 grams/cm3, 1 atmosphere = 1.01× 105 N/m2).

7. The density of Aluminum is 2.7 × 103 kg/m3 and YAl = 0.70 ×
1011 N/m2. A thinly-drawn aluminum wire of length 10.00m and cross-
sectional area of 5.0mm2 is held under a tension of 2.0× 102 N.

a. Compare the velocity of propagation of transverse mechanical waves
and longitudinal sound waves in this wire.

b. Which propagates faster?

16
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c. Can both velocities be made the same?

8. The molecular mass of oxygen is 16 times the molecular mass of hy-
drogen, while the molecular mass of krypton (a noble gaseous ele-
ment) is 42 times the molecular mass of hydrogen. Compare the
speed of sound in oxygen and krypton at a given temperature. Oxy-
gen is diatomic while krypton is monatomic so the relevant γ’s are:
γO2

= 1.4, γKr = 1.6.

Brief Answers:

1. v = 132m/s. Help: [S-2] Help: [S-6]

2. v = 437m/s; Help: [S-1] Help: [S-2] Help: [S-5] Help: [S-6]
ν = 2.5× 103 Hz;
λ = 0.175m;
y = y0 sin [(35.9m−1 x± (1.57× 104 s−1) t + θ0]

3. vsteel = 4.98× 103 m/s; Help: [S-2] Help: [S-6]
vair = 3.40× 102 m/s Help: [S-4] Help: [S-6]
The speed of sound is 14.4 times larger in steel than in air.

4. λ = 7.5m Help: [S-2] Help: [S-7]

5. νhelium = 662Hz; nearly 2 octaves higher. Help: [S-2]

6. v = 327m/s; Help: [S-2] Help: [S-6]
ξ = 0.010 cm sin [(7.7m−1 x − (8.00× 102 π s−1) t + θ0]

7. a. vmechanical = 121m/s, vsound = 5.09× 103 m/s.

b. sound.

c. A tension of 3.5 × 105 N would equalize the speeds. The tensile
strength of aluminum is less than that so the aluminum would pull
apart.

8. vO = 1.52 vKr. [NOT 1.07, NOT 1.62] Help: [S-3]
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-Problem 2)

The problem statement says transverse waves in a wire, not longitu-
dinal waves in a rod or a gas. Use the right wave equation.

S-2 (from PS-Problems 1, 2, 3, 4, 5, 6)

Non-MKS units (e.g., “feet,” “grams,” “cm,”) must be converted to
MKS units.

S-3 (from PS-Problem 8)

MO/MKr = (MO/MH)/(MKr/MH) which is given to you as 16/42.

S-4 (from PS-Problem 3)

µ = 1.148× 10−3 kg/m.

S-5 (from PS-Problem 2)

µ = 0.0787 kg/m. If I buy 1m of the wire I get 0.0787 kg of wire. If I
buy 2m of the wire I get 0.1574 kg of wire. That is what “linear density”
µ is all about.

S-6 (from PS-Problem 3)

Kindly read Note 2 at the head of the Problem Supplement and do what
it says to do.

S-7 (from PS-Problem 4)

val = 5.06 × 103 m/s. Think about what happens physically at the
interface between the two metals. What quantity is preserved across
the interface? Wavelength? Velocity? Frequency?
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1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. The density of Aluminum is 2.7 × 103 kg/m3 and YAl = 0.70 ×
1011 N/m2. A thinly-drawn aluminum wire of length 10.00m and cross-
sectional area of 5.0mm2 is held under a tension of 2.0× 102 N.

a. Compare the velocity of propagation of transverse mechanical waves
and longitudinal sound waves in this wire.

b. Which propagates faster?

c. Can both velocities be made the same?

3. The molecular mass of oxygen is 16 times the molecular mass of hydro-
gen, while the molecular mass of krypton (a noble gaseous element) is
42 times the molecular mass of hydrogen. Compare the speed of sound
in oxygen and krypton at a given temperature. [Note that oxygen is
diatomic while krypton is monatomic and γO2

= 1.4, γKr = 1.6.]

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 7.

3. See this module’s Problem Supplement, problem 8.
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