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THE WAVE EQUATION AND ITS SOLUTIONS

by

William C. Lane
Michigan State University

1. Overview

Waves and vibrations in mechanical systems constitute one of the
most important areas of study in all of physics. Evidence of the existence
of these phenomena can be observed for almost any kind of physical sys-
tem. The propagation of sound and light, ocean waves, earthquakes, the
transmission of signals from the brain are a few examples. In this unit we
introduce the descriptors of waves and their motions: periodicity, ampli-
tude, propagation speed, etc. We relate these to symbols in the differential
form of the wave equation and in its formal solutions. We also relate these
descriptors to the properties of some simple physical systems.

2. The Wave Function

2a. Graphical and Mathematical Representation. Waves are rep-
resented mathematically by a wave function that may be expressed as a
graph or a formal function. This function describes the disturbance made
by the wave at various times as it propagates in space. Because the wave
function depends on both position and time, when we wish to draw a
graph of the wave we usually keep one variable fixed. For example, Fig. 1

v

x

Figure 1. A “snapshot” of a water wave showing the wave
profile at a given instant of time. The vertical axis indicates
the displacement of water from its average level.
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Figure 2. Vertical displacement of a
floating object as a water wave passes.

shows the profile of a series of water waves at a given instant of time. You
can think of this as a “snapshot” of the wave. Alternatively we can ex-
amine the time variation of the wave at a specific point x. If we look at a
piece of driftwood as the waves pass, it will bob up and down, executing a
periodic motion. The vertical displacement of the driftwood may also be
represented graphically, as illustrated in Fig. 2. The exact mathematical
form of the wave function, ξ = f(x, t), depends on the type of wave that
is being considered.

2b. Traveling Waves. One particular form of wave function, ξ =
f(x − vt), corresponds to the “traveling wave,” the most common type
of wave we encounter. A traveling wave consists of a periodic series of
oscillations of some quantity that travel, or “propagate,” through space
with a speed characteristic of the wave and the medium through which
it travels. The expression ξ = f(x − vt) represents a one-dimensional
traveling wave propagating in the positive x-direction with speed v. If the
oscillations in the medium are simple harmonic oscillations, the functional
form of the wave function is also harmonic. It is important to convince
yourself that when f(x) is a function representing some curve then the
same function f , but with (x) replaced by (x − a), represents a curve
with the same shape but shifted along the positive x-axis by an amount
“a” (see Fig. 3). Similarly f(x + a) represents that curve shifted in the
negative x-direction by an amount “a.”

Try it with some simple, easy to compute function.1 Understand-
ing this is fundamental to understanding the mathematical description of
wave motion. Replacing “a” by something linear in time, a = vt, gives
you a curve that propagates either to the right or the left depending on
the sign of v.

1For example, f = ax or f = C sin bx.
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f (x)1 f (x-a)1 f (x)2 f (x-a)2

f (x)3 f (x-a)3

Figure 3. Three different functions shifted to the right by
an amount “a”: the accompanying replacement of (x) by
(x− a) is a general property of all functions.

3. Description of the Wave Motion

3a. The Harmonic Wave Function. A harmonic wave function
is sinusoidal in functional form and for a one-dimensional wave may be
expressed as either:

ξ = A sin

[

2π

λ
(x± vt) + φ0

]

, (1)

or

ξ = A cos

[

2π

λ
(x± vt) + φ0

]

. (2)

This means that the profile of the wave at a particular time is a sine
or cosine function, as shown in Fig. 4, and that at a particular point in
space, the wave produces a simple harmonic oscillation in some quantity
ξ, as indicated in Fig. 5. The symbols in Eqs. (1) and (2) are explained in
the remaining paragraphs of this section. The parameters A and φ0 are
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x

x t = constant

Figure 4. Snapshot of a har-
monic wave function at some
specified time t.

t

x x = constant

Figure 5. Plot of the same wave
as in Fig. 4, but at a specified
point x.

constants determined by the initial displacement and initial velocity of ξ
at some point in space.

3b. Phase and Phase Constant. The argument of a harmonic func-
tion is called the “phase” of the wave, φ. For a one-dimensional traveling
wave:

φ(x, t) =
2π

λ
(x± vt) + φ0 . (3)

The phase describes the part of a complete wave oscillation that is oc-
curring at a given place and time. The constant φ0 is called the “phase
constant” and is the value of φ at x = 0, t = 0. The units of the phase
are radians when 2π occurs in Eq. (3). To express φ in degrees, replace
2π radians with its equivalent, 360◦.

3c. Amplitude, Wavelength, and Wave Number. The maximum
value that sinφ or cosφmay take is±1, so the maximum wave disturbance
ξ is:

ξmax = ±A . (4)

This maximum value of ξ is called the “amplitude” of the wave. The point
where ξ = +A is typically called the “crest” of the wave and the point
where ξ = −A is called the “trough” of the wave.2 The distance from
crest to crest (or trough to trough) is called the “wavelength,” the distance
between points on the wave which have the same phase at the same instant
of time. Figure 6 illustrates these wave dimensions for a sinusoidal wave.
A useful expression involving the wavelength is the definition of a quantity

2Notice that the designation of a wave maximum as a crest or a trough is somewhat
arbitrary since the maxima at ξ = +A are identical to the maxima at ξ = −A.
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Figure 6. Amplitude and wave-
length of a harmonic wave.

called the wave number, k, of a wave,

k =
2π

λ
. (5)

Since wavelength has units of length and 2π radians is a dimensionless
quantity, k has units of inverse length, usually m−1 or cm−1. Using the
wave number symbol, a one-dimensional sinusoidal wave function may be
expressed as

ξ = A sin [k(x± vt) + φ0] . (6)

3d. Phase: Period, Frequency, Angular Frequency. There are
a number of ways of writing the phase of a wave, depending on whether
one uses period, frequency, or angular frequency. For a particle at a fixed
point, undergoing simple harmonic motion, we can write the phase of its
motion as

φ =

(

2π

T

)

t+ φ0 , (7)

where T is the period of the motion, and φ0 is the initial phase. Compar-
ing Eqs. (7) and (3), we see that the phase of a one-dimensional harmonic
wave may be written as

φ = 2π

(

x

λ
±

t

T

)

+ φ0 . (8)

Using Eq. (8), the phase of a wave is easy to interpret: a change in position
by one wavelength or a change in time by one period results in a change
in phase of 2π radians (360◦). The phase of a harmonic wave may also be
expressed in terms of frequency or angular frequency. Using the relation
between period and frequency

ν =
1

T
, (9)
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the phase may be written as

φ = 2π
(x

λ
± νt

)

+ φ0 , (10)

or using the relation between frequency and angular frequency

ω = 2πν (11)

and the definition of wave number, Eq. (5), the phase becomes

φ = kx± ωt+ φ0 . (12)

3e. Relations Among Traveling-Wave Descriptors. By compar-
ing Eq. (3) and (8), a relation between the wave speed v, the wavelength
λ, and the period T , may be determined to be:

v =
λ

T
. (13)

This expression may be transformed into several equivalent forms by using
the definition of frequency and angular frequency:

v = λν , (14)

and
v =

ω

k
. (15)

Using these relations between wave descriptors and their definitions, you
should be able to transform between the several forms of the wave function
we have encountered so far. These relations and the various forms of
the harmonic wave function are summarized in Table 1. The variables
used in Table 1 are listed in Table 2, although you should note that:
(1) any part of a wave could be used in place of the word ”crests”; and
(2) the descriptions are only meant as reminders of the more complete
descriptions given throughout the text.
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Table 1. Useful wave relations and various one-dimensional
harmonic wave functions. Remember that cosine functions
may also be used as harmonic wave functions.

Wave Relations One-Dimensional Wave Functions

v =
λ

T
ξ = A sin

[

2π

λ
(x± vt) + φ0

]

v = λν ξ = A sin [k (x± vt) + φ0]

v =
ω

k
ξ = A sin

[

2π

(

x

λ
±

t

T

)

+ φ0

]

k =
2π

λ
, ν =

1

T
ξ = A sin

[

2π
(x

λ
± νt

)

+ φ0

]

ω = 2πν ξ = A sin [kx± ωt+ φ0]

Table 2. Variables used in Table 1.

Variable Brief Description

λ wavelength: distance between successive crests at one time

T period: time between successive crests at one place

ξ wave function: the size of the wave at any time and place

A amplitude: maximum value of the wave function

v speed of each crest

t the time at which the wave function is being described

φ0 phase constant: the wave’s phase at time zero, place zero

k wave number: number of waves per unit length at one time

x the place at which the wave function is being described

ω angular frequency: 2π times the frequency

ν frequency: rate at which crests go by at one place

4. The Equation of Wave Motion

4a. One-Dimensional Equation of Wave Motion . By applying
Newton’s second law and some forms of Hooke’s law to the deformation
ξ in an elastic medium, a differential equation of motion for ξ may be

11
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derived.3 If ξ is a one-dimensional traveling wave in the elastic medium,
the differential equation of motion is found to be:

∂2ξ

∂t2
= v2 ∂

2ξ

∂x2
. (16)

This partial differential equation4 is called the “characteristic equation”
of wave motion in one dimension. If, by using Newton’s second law, you
find for a physical system that the equation of motion is of this form, then
you know that wave motion can result. From this differential equation
you can read the propagation speed of any wave that obeys it.

4b. Forms of the General Solution. Since the wave equation is a
second order linear partial differential equation, the general solution of the
wave equation consists of a linear combination of two linearly independent
harmonic functions:

ξ(x, t) = f1(x± vt) + f2(x± vt) . (17)

You should be able to verify Eq. (17) as a solution to Eq. (16), the wave
equation, by direct substitution.

If the signs of the “vt” terms are the same in f1 as in f2, Eq. (17)
represents a superposition of two waves traveling in the same direction.

If the signs of “vt” terms are opposite for the two functions in
Eq. (17), we have the superposition of two waves traveling in opposite
directions. With appropriate choices for boundary conditions, this par-
ticular solution to the wave equation is called a “standing wave” and it is
a very important phenomenon in physics. It is treated elsewhere.5

4c. Restriction to Harmonic Waves. We can restrict Eq. (17) to
a description of single-frequency harmonic waves by making one term a
sine function and the other a cosine function (these functions are linearly
independent):

ξ(x, t) = A sin[k(x− vt)] +B cos[k(x− vt)] . (18)

The two amplitudes A and B complete the description of particular waves.
That is, specifying values for them picks out a specific case from all pos-
sible waves with the specified frequency and velocity already specified in

3For several examples of this derivation, see “Sound Waves and Small Transverse
Waves on a String” (MISN-0-202).

4For the meaning of “partial differential equation” and “partial derivative,” as used
in this module, see this module’s Appendix.

5See “Standing Waves” (MISN-0-232) and “Standing Waves in Sheets of Materials”
(MISN-0-233).
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Eq. (18). For example, if the values of ξ and its first derivative with re-
spect to time are known at some point in space and at some instant of
time for the process at hand (usually at x = 0 and t = 0), then those
values can be used to set A and B. As an alternative to Eq. (18), we
can express ξ as a single sine or cosine function (more useful in certain
situations):

ξ(x, t) = ξ0 sin[k(x− vt) + φ0] , (19)

where Eqs. (18) and (19) are connected by:

ξ0 =
(

A2 +B2
)1/2

and φ0 = tan

(

B

A

)

. (20)

Either way we have two constants that must be established for any par-
ticular application.6
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Glossary

• amplitude: the maximum value of a wave function.

• boundary conditions: the values of the wave function and its first
time-derivative, at some point in space, at some instant of time.

• field: a quantity that has a value at each point in space.

• harmonic function: a sinusoidal function; for example, sin(kx±ωt)
or cos(kx± ωt).

• partial derivative: a derivative of an expression where only one
quantity in the expression can vary.

6The requirement of two constants may not surprise you since the solution of a
second order differential equation requires two sequential integrations, thus introducing
two constants of integration. These two constants are called “boundary conditions”
or “initial conditions,” but both of those terms are misleading since the values used
are not necessarily on any physical periphery nor are they necessarily values for the
boundaries of the time interval being studied.
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• phase: the argument of a harmonic wave function. The phase of a
wave specifies what part of a complete oscillation or cycle the wave is
producing at a given point in space and at a given time.

• phase constant: the value of the phase of a wave at time t = 0 at
the origin of the relevant coordinate system.

• sinusoidal wave: a wave whose spatial profile at any given time is
a sine function and which produces simple harmonic oscillations of the
wave quantity ξ at any given point through which the wave passes.

• traveling wave: a periodic series of oscillations that propagate
through space with a speed characteristic of the wave and the medium
through which it travels.

• wave equation: a differential equation of motion whose solutions are
mathematical representations of waves.

• wave function: a mathematical representation of a wave, and the
solution to the wave equation.

• wave number: a quantity inversely proportional to the wavelength
of a wave; symbolized by k. Note: k = 2π/λ.

• wave speed: the speed with which a wave propagates through space.

• wavelength: the distance in space between successive points of equal
phase on a wave; symbolized by λ.

Partial Derivatives

a. Particles and Ordinary Derivatives. A “particle” is usually
specified in part by its position, say x. The position of the particle usually
changes with time so we write x(t). Then the rate of change of the
particle’s position with respect to time is written dx(t)/dt, and that is
its x-component of velocity. It is an example of the use of the ordinary
derivative.

b. Fields: Temperature as an Example. A “field” is specified by
its value at each space point (x) at each time (t). For example, the tem-
perature of the air in this room can be written as T (x, t): at a particular
time t it has a value (in degrees) at each space point x as one moves along
some straight line across the room. As time changes, the value at each

14
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space point along the line changes. Note that there are an uncountable
infinity of points along the line, at each of which the temperature can be
specified at any one time. This is in contrast to a “particle,” for which
there is only one position at any one time.

c. A Mental Exercise. In your mind, go through the process of
plotting an ordinary two-dimensional graph showing the temperature at
all points x for a fixed time t. That is, plot T (x) for a single time t,
a “snapshot” of the temperature field. Now imagine plotting a separate
graph showing the temperature at a single point (that is, at a single x
value), as a function of time. Think about how the measurements would
be made in each case.

d. Fields and Partial Derivatives: an Example. If we want to
know the rate of change of temperature, T , with position along a line, x,
at a fixed time t, we must take the derivative of T with respect to x while
holding t fixed. This process of holding one variable fixed while taking
the derivative with respect to another variable is called “taking a partial
derivative.” It is written with ∂ symbols replacing the usual d symbols in
the derivative. Here are some examples of taking first and second partial
derivatives of a particular function f(x, t):

f = (x+ vt)2

∂f/∂x = 2(x+ vt) ∂f/∂t = 2v(x+ vt)

∂2f/∂x2 = 2 ∂2f/∂t2 = 2v2

15
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PROBLEM SUPPLEMENT

Note: Problems 8, 9, and 10 also occur in this module’s Model Exam.

1. Given the function:

ξ(x, t) = A1 cos k1(x+ vt)−A2 sin k2(x− vt) .

Determine whether this a solution to the wave equation, Help: [S-1]

v2 ∂
2ξ

∂x2
=
∂2ξ

∂t2
.

2. Let ξ(x, t) = A sin(ωt+kx+φ0) where φ0 is the phase constant. This
wave is traveling in the negative x-direction at the speed of sound in
air, 330m/s.

a. Determine whether ξ(x, t) satisfies the wave equation quoted in
Problem 1.

b. If A = 6.0 cm, ξ(0, 0) = 5.196 cm and

ξ̇(0, 0) ≡
∂ξ

∂t

∣

∣

∣

∣x = 0
t = 0

= +94.2m/s ,

find φ0, ω, k, T , ν, and λ.

c. Sketch ξ(x) at t = 0.

3. A certain one-dimensional wave is observed at a certain instant of
time to be described by:

ξ(x, t1) = (1.3m) sin[(1.2m
−1)x+ 16π]

and 12 seconds later by:

ξ(x, t1 + 12 s) = (1.3m) sin[(1.2m
−1)x+ 28π].

Determine this wave’s: (a) amplitude; (b) wavelength; (c) frequency
(in hertz); (d) speed; and (e) direction of travel.

16
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4. A function y(x) consists of: (1) a straight line that increases from
its value of zero at position (x0 − A) to its maximum value of M at
position x0; then (2) another straight line from this maximum value
of M to be the value zero at position (x0+A). Everywhere else, y(x)
is zero. Thus the function is a triangle in the x-y plane joining points
(x0 −A, 0), (x0,M) and (x0 +A, 0).

a. Sketch the function y(x).

b. Sketch the function y(x+A).

c. Sketch the function y(x− 2A).

5. Show that ξ = ξ0 sin(kx−ωt) may be written in the alternative forms:

a. ξ = ξ0 sin[k(x− vt)]

b. ξ = ξ0 sin
[

ω
(x

v
− t

)]

c. ξ = ξ0 sin
[

2π
(x

λ
− νt

)]

d. ξ = ξ0 sin

[

2π

(

x

λ
−

t

T

)]

6. A one-dimensional sinusoidal wave, of wavelength 2m, travels along
the x-axis (in the positive x-direction). If its amplitude is 0.5m and
it has a period of T = 0.5 s:

a. Write down an appropriate wave function to represent this wave.

b. If the displacement of the wave is 0.2m at x = 0, t = 0, and
ξ̇(0, 0) = +5.76m/s, find the phase constant.

7. A one-dimensional sinusoidal wave moves along the x-axis. The dis-
placement at two points, x1 = 0 and x2 = 2.0 cm, is observed as a
function of time:

ξ(x1, t) = (0.02 cm) sin[(3π s−1)t]

ξ(x2, t) = (0.02 cm) sin[(3π s−1)t+
π

2
]

a. What are the amplitude, frequency, and wavelength of this wave?
Help: [S-10]

b. In which direction and with what speed does the wave travel?

8. Verify whether or not each of the following functions is a solution to
the one-dimensional wave equation:

17
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a. ξ = ξ0 cos(πt)

b. ξ = ξ0 sinM(x+ 4vt) where M is a constant

c. ξ = Y (x− vt)

9. A one-dimensional sinusoidal wave is traveling along the x-axis in the
negative x-direction. It can be represented by:

ξ(x, t) = A cos[
2π

λ
F (x, t)].

The wave’s frequency is 10Hz and its wavelength is λ. Write down
an appropriate function F (x, t) which gives this wave the properties
listed above.

10. The displacements at two points in space are observed as a wave ξ(x, t)
passes by. At the points x1 = 0.5m and x2 = 2.5m the displacement
from equilibrium is observed as a function of time. These are found
to be: ξ(0.5m, t) = (1.5× 10−4m) sin[(6π s−1)t]
ξ(2.5m, t) = (1.5× 10−4m) sin[(6π s−1)t+ 2π/3]

a. What is the amplitude of this wave?

b. What is the frequency of this wave in hertz?

c. What is the wavelength?

d. What is the speed with which this wave travels?

e. What way is the wave traveling?

f. What is the time rate of displacement at the point x1 at times
t = 0 and t = 0.25 s?

Brief Answers:

1. Yes Help: [S-1]

2. A traveling wave:

a. Yes, if ω2 = v2k2 (see Problem 1).

b. φ0 = π/3 radians= 60◦ Help: [S-3]

ω = 3.14× 103 s−1 Help: [S-2]

k = 9.5m−1

18
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T = 2× 10−3 s

ν = 500Hz

λ = 0.66m

c. ξ(x, t) at t = 0:

x(x,t)

5.196

t = 0

3. A wave described at two times:

a. A = 1.3m Help: [S-5]

b. λ = 5.24m Help: [S-6]

c. ν = 0.50Hz Help: [S-4]

d. v = 2.62m s−1 Help: [S-7]

e. −x̂ direction Help: [S-8]

4. y(x0) is the maximum value of y(x).

a. y(x) has its maximum value when x = x0:

M

x -A0 x0 x +A0

y(x)

b. y(x+A) has its maximum value when x+A = x0:
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M

x -2A0 x -A0 x0

y(x+A)

c. y(x− 2A) has its maximum value when x− 2A = x0:

M

x +A0 x +2A0 x +3A0

y(x-2A)

5. k = ω/v; kv = ω; (ω/v) = (2π/λ); ω = 2πν; ν = 1/T .

6. Determining the functional form.

a. ξ = (0.5m) sin
[(

πm−1
)

x−
(

4π s−1
)

t+ φ0

]

,

or

ξ = (0.5m) cos
[(

πm−1
)

x−
(

4π s−1
)

t+ φ0

]

.

b. φ0 = 156.4
◦ if the sine function is used;

φ0 = 66.4
◦ if the cosine function is used. Help: [S-9]

7. A wave specified at two times:

a. A = 0.02 cm; ν = 1.5 /s; λ = 8.0 cm Help: [S-10]

b. The wave moves in the negative x direction with speed v = 12 cm/s.

8. Only (c) satisfies this equation.

9. F (x, t) = x+ (10Hz)λt

10. Displacements at two points:

a. 1.5× 10−4m
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b. 3Hz

c. 6m

d. 18m/s.

e. Toward the negative x-direction

f. 9π × 10−4m/s and zero respectively.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-Problem 1)

Taking the appropriate partial derivatives,

∂ξ

∂t
= −k1vA1 sin [k1(x+ vt)] + k2vA2 cos [k2(x− vt)]

⇒
∂2ξ

∂t2
= −k2

1v
2A1 cos [k1(x+ vt)] + k2

2v
2A2 sin [k2(x− vt)]

∂ξ

∂x
= −k1A1 sin [k1(x+ vt)]− k2A2 cos [k2(x− vt)]

⇒
∂2ξ

∂x2
= −k2

1A1 cos [k1(x+ vt)] + k2
2A2 sin [k2(x− vt)]

Comparing the two equations marked ⇒, it is clear that v2 times the
lower one equals the upper one. Thus ξ is a solution to the wave equa-
tion. However, if the velocity v in the two terms had not been the same,
ξ would not have been a solution. Note that the first term represents a
wave of amplitude A1 and wavelength 2π/k1 traveling to the left, while
the second term represents a wave of amplitude A2 and wavelength
2π/k2 traveling to the right. These two waves are traveling through the
same space points at the same time.

S-2 (from PS-Problem 2b)

ω =
ξ̇(0, 0)

A cosφ0

=
94.2m/s

(6.0 cm)(1/2)
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S-3 (from PS-Problem 2b)

ξ(0, 0) = A sin(0 + 0 + φ0) = A sinφ0 = 5.196 cm

sinφ0 =
ξ(0, 0)

A
=
5.196

6.0
= 0.866,

so: φ0 = sin
−1(0.866) = 60◦ (π/3 radians) or 120◦ (2π/3 radians)

To choose the correct value of φ0, information from ξ̇(0, 0) must be used:

ξ̇(x, t) ≡ ∂ξ/∂t = ωA cos(kx+ ωt+ φ0)

ξ̇(0, 0) = ωA cosφ0 = +94.2m/s

cosπ/3 = +1/2, cos(2π/3) = −1/2.

Since ξ̇(0, 0), ω, and A are all positive, cosφ0 must be positive as well,
so 2π/3 is rejected as a possible value for φ0, i.e. φ0 = π/3.

S-4 (from PS-Problem 3c)

Rule: ∆(phase) = 2π

[

∆x

λ
±
∆t

T

]

.

For this case,
phase #1= (1.2m−1)x+ 16π
phase #2= (1.2m−1)x+ 28π
∆(phase) = 12π

but ∆x = 0, hence: 2π

(

∆t

T

)

= 12π, and ∆t = 12 s.

S-5 (from PS-Problem 3a)

Just look at either ξ(x, t1) or ξ(x, t2).

S-6 (from PS-Problem 3b)

See Problem 1. λ = 2π/(1.2m−1).

S-7 (from PS-Problem 3d)

Compare to the general form of the wave equation to get:
kv∆t = ∆φ ⇒ v = 12π/(1.2m−1 12 s)
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S-8 (from PS-Problem 3e)

Read and understand this module’s text.

S-9 (from PS-Problem 6b)

Note 1: −203.6◦ is just as good an answer as 156.4◦.
Note 2: Electronic calculators face an ambiguity in giving an answer
for an inverse trigonometric function. For example, sin(5.74◦) =
sin(174.26◦) = 0.1. Therefore sin−1(0.1) could be either 5.74◦ or
174.26◦: both are valid mathematical answers to the inverse sine prob-
lem, taken in isolation. You must decide which is the right answer by
examining other aspects of the problem at hand.

S-10 (from PS-Problem 7)

Compare to the general form of the wave equation to get:
(2π/λ)∆x = ∆φ ⇒ λ = 2π(2.0 cm)/(π/2)
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet.

2. Verify whether or not each of the following functions is a solution to
the one-dimensional wave equation:

a. ξ = ξ0 cos(πt)

b. ξ = ξ0 sinM(x+ 4vt) where M is a constant

c. ξ = Y (x− vt)

3. A one-dimensional sinusoidal wave is traveling along the x-axis in the
negative x-direction. It can be represented by:

ξ(x, t) = A cos

[

2π

λ
F (x, t)

]

.

The wave’s frequency is 10Hz and its wavelength is λ. Write down an
appropriate function F (x, t) which gives this wave the properties listed
above.

4. The displacements ξ(x, t) at points in space are observed as a wave
passes by. At the points x1 = 0.5m and x2 = 2.5m the displacements
from equilibrium, ξ, are found to be (as functions of time):

ξ(0.5m, t) = (1.5× 10−4m) sin[(6π s−1)t]

ξ(2.5m, t) = (1.5× 10−4m) sin[(6π s−1)t+ 2π/3]

a. What is the amplitude of this wave?

b. What is the frequency of this wave in hertz?

c. What is the wavelength?

d. What is the speed with which this wave travels?

e. What direction is the wave traveling?

f. What is the time-rate of displacement at the point x1 at times t = 0
and t = 0.25 s?
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Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 8.

3. See this module’s Problem Supplement, problem 9.

4. See this module’s Problem Supplement, problem 10.
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