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Input Skills:

1. Describe an ideal gas in terms of (a) the relationship between
temperature and the speed of its molecules and (b) the nature of
the interactions among its molecules. (MISN-0-157)

Output Skills (Knowledge):

K1. Define the partition of a system consisting of N molecules of a gas.

K2. Define thermal equilibrium starting from the concept of a very
large number of possible partitions for a given many particle sys-
tem. Identify the partition for an ideal gas in thermal equilibrium.

Output Skills (Problem Solving):

S1. Determine the number of particles that have their energies in a
given energy range, given the partition for the many particle sys-
tem.

S2. Given the partition, calculate the average values of kinetic energy,
speed and speed squared and the total energy of a system of N
molecules of a gas.

External Resources (Required):

1. K.W.Ford, Classical and Modern Physics, Vol. 2, Xerox (1972).
For availability, see this module’s Local Guide.

2. M.Alonso and E. J. Finn, Physics, Addison-Wesley (1970). For
availability, see this module’s Local Guide.
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ENERGY AND BOLTZMANN DISTRIBUTIONS

by

J. S. Kovacs and O. McHarris
Michigan State University

1. Introduction

In a gas in thermal equilibrium at a given temperature T , the average
kinetic energy of the molecules of that gas has a definite value. For an
ideal gas, in fact, the linear relationship EK,ave = (3/2)kT defines the
temperature of that gas. However, the energy of an individual molecule
of that gas varies from instant to instant, changing from collision to col-
lision and at any one instant the individual energies of the molecules are
distributed over a broad range of values about the average energy. As
a consequence of the very large number of molecules in a gas sample
(≥ 1020 molecules), the probability that any one molecule will have any
given energy value can be known to very high precision when the gas is
in thermal equilibrium. This probability distribution gives us the distri-
bution of particles among the possible energy values and is given by the
Boltzmann distribution function for an ideal gas in thermal equilibrium.
In this unit distribution functions in general and the Boltzmann function
in particular will be introduced.1

2. Energy Distribution Functions

2a. General Distribution Functions. Suppose we have a system of
N molecules and a set of L available energies such that any one of the N
molecules could have any of the L energies. Then there are very many
possible ways that the N molecules could have energies allocated to them.
For example all of the molecules could have energy E9, or maybe 1/5 of
the molecules could have energy E7 and the other 4/5 have energy E33,
or the energies could be all equally populated, meaning the molecules are
divided up evenly among them, and so forth. The numbers that tell how
many of the molecules have each of the energies is called the partition, or
distribution; that is, if n1 molecules have energy E1, n2 have energy E2,
and so on up to nL molecules with energy EL, then the set of numbers

1A concept intimately related to the probability distribution of the particles of
a gas amongst the possible energy states of the system is entropy. See “Entropy”
(MISN-0-160).
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n1, n2, . . . , nL is the partition. If one knows the partition, it is easy to
calculate a system’s total energy:

Etotal = n1E1 + n2E2 + . . .+ nLEL =
L
∑

i=1

niEi ,

and its average energy:

Eave =
Etotal

N
=

∑L
i=1 niEi

N
.

Notice that since N is the total number of molecules, we also know:

N = n1 + n2 + . . . nL =

L
∑

i=1

ni .

Many different distributions are possible, we said. However, a many-
particle system in thermal equilibrium can be shown by both theory and
experiment to have only one distribution, determined by the system’s
temperature.

2b. Thermal Equilibrium. At thermal equilibrium a system is in its
most probable distribution and thus may also be said to be in statistical
equilibrium. The more particles there are in a system, the more probable
the most probable distribution is; the very large number of molecules
in even a small quantity of gas makes the most probable distribution
very stable and the fluctuations around it very small. The energy of
any one molecule changes drastically and rapidly as it collides with other
molecules in the system. Since, however, the molecules of an ideal gas
collide elastically, one’s loss is literally another’s gain, and since there are
so very many of them, for every molecule that attains energy Ei another
loses energy Ei. At thermal equilibrium, the total number of molecules
with any given energy is constant, even though the individual particles
trade energies rapidly among themselves.
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2c. The Boltzmann Distribution. The most probable distribution
for an ideal gas is a well known function called the Boltzmann distribution
(or the Maxwell-Boltzmann distribution). It can be derived by statistical
mechanics and is given by:

dn

dE
=

2πN

(πkT )3/2
E1/2 e−E/kT .

The general shape of this function is shown in Fig. 1. Notice now we have
not written the distribution in the form of a set of numbers n correspond-
ing to specific energies E but rather in the form of a continuous function
that can tell us the number of molecules having energies within a range
of energies. The reasons for this are discussed in Exercise B. The model
for an ideal gas is a system of small round particles whose only energy
is their kinetic energy. That means that their distribution function could
be in terms of speed instead of energy simply by substituting E = mv2/2
and dE = mv dv. Thus the speed distribution of an ideal gas is:

dn

dv
= 4πN

( m

2πkT

)3/2

v2e−mv2/2kT .

The functions dn/dE and dn/dv plotted as functions of E and v,
respectively, obviously do not have the same shape.2 Nevertheless, they
do have several characteristics in common: they are equal to zero at E = 0
or v = 0; both go to zero exponentially at high values of E or v; and both
have a maximum at some most probable value of E or v, the position and
shape of the peak depending on the temperature T . At low temperatures
both dn/dE and dn/dv have high, narrow peaks near E = 0 or v = 0,
corresponding to a system with most of its particles moving relatively
slowly. At high temperatures, on the other hand, both functions have
low, broad peaks at high values of E or v, corresponding to a system of
particles moving both rapidly and with a relatively wide range of speeds.

3. Readings

For access to the following readings, see this module’s Local Guide.

Read pages 609-619 of “Classical and Modern Physics,” Vol. 2, by
K.W.Ford.3 This reading selection develops the connection between par-
tition probability and equilibrium.

2Notice in particular that near E = 0, dn/dE starts out like y =
√

x whereas near
v = 0, dn/dv starts out like y = x2.

3For availability, see this module’s Local Guide.
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E

dn

dE

l l

Figure 1. The Maxwell-Boltzmann distribution.

Read Section 13.4 (p. 257) of “Physics” by M. Alonso and E.J.
Finn.4

4. Exercises

A. Consider the following partition shown in the table below (ni is the
number of particles with energy Ei):

i ni Ei (joules)
1 0.5× 1018 1.60× 10−21

2 1.0× 1018 2.40× 10−21

3 1.8× 1018 3.20× 10−21

4 1.2× 1018 4.00× 10−21

5 0.6× 1018 4.81× 10−21

with no other energies represented.

a. What are the average kinetic energy and the total internal energy for
the particles of this system?

b. How many moles of substance are there in this gas?

c. Could this system, represented by this above partition, be in thermal
equilibrium? Explain.

d. Can you assign a temperature to this gas with this partition? Explain.

e. When thermal equilibrium gets established, if this system is isolated
so that none of the energy gets away, what can we say about the
temperature? What about the energy partition?

4For availability, see this module’s Local Guide.
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B. The partition described in Exercise A was a discrete partition. That
is, 9.8% of the particles had energy equal to exactly 1.60 × 10−21 joules
each, 19.6% of them had 2.40×10−21 joules each, 35.3% had 3.20×10−21

joules, 23.5% had 4.00× 10−21 joules, and 11.8% had 4.81× 10−21 joules.
No other energies were represented. No particle, for example, had an
energy anywhere in the range between 1.60 × 10−21 joules and 2.40 ×
10−21 joules, although about 1018 of them had exactly either of these two
energies.

In any physical situation, as a result of the many collisions that occur
in such a many-particle system the energy distribution will quickly spread
to “fill in the blank spaces” between the discrete ni’s so that there is a
continuous distribution: you will find particles with any energy (within
the limitations set by the total energy of the system. Later you’ll see that
Quantum Mechanics also imposes limitations. So how do you describe
the energy partition in this case?

You cannot write down the partition in tabular form, as was done
in Exercise A, unless your table includes every possible energy in some
continuous range. Then you run into what may seem like a contradiction,
because there are an infinite number of possible energies and only a finite
number of particles the most likely partition from the discrete tabulation
point of view is zero particles at any one specified energy. That is why
it makes more sense, when a continuous range of energies is possible, to
describe the partition with a density function (the number of particles
per unit energy in the vicinity of specified energy value). The Maxwell-
Boltzmann distribution function is such a density function. (It is the
correct density function which gives the energy partition of an ideal gas
after thermal equilibrium has been established.)

A prototype of a density function dn/dE is plotted vs E, the energy,
in Fig. 2. Note that it can also be expressed and plotted as a function of
v, the velocity.

What does a point on such a curve tell you? Or if dn/dE was given
to you as a function of E and you evaluated it at a specific value of
the energy, E0 what would this number tell you? It would not tell you
the number of particles that have energy E0. For one thing, it has the
dimensions of number per unit energy, not number. Also, we concluded
above, the number of particles that have precisely the energy E0 is zero
for all values of E0. From calculus, (dn/dE) dE is dn, the infinitesimal

9
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E E0

dn
dE

(E )l l

0

dn
dE

(E)l l

Figure 2. A prototypical number density (number per unit
energy), plotted as a function of energy.

increment in the variable n. For finite (but small) increments, ∆E, then:

dn

dE
∆E = ∆n.

This has the interpretation of being the finite increment in n in the neigh-
borhood where dn/dE is evaluated. In our case, n is the number of parti-
cles in an energy increment E around the point on the curve where dn/dE
is evaluated.

Consider the curve depicted in Fig. 2. Suppose at energy E = 2 ×
10−21 joules the value of the function dn/dE is 2×1024/,J meaning 2×1024

particles per joule. How many particles are there in an energy range
0.002× 10−21 J around this value of E0? How many are there in a larger
interval, ∆E = 0.02 × 10−21 joules? or the interval ∆E = 0.2 × 10−21

joules? The answers you got should have been 4, 40, and 400
particles, respectively. The first of these says that 4 particles in the system
can be expected to have their energy between 1.999 × 10−21 joules and
2.001× 10−21 joules, and in the last interval, there are 400 particles with
individual energies somewhere between 1.9×10−21 joules and 2.1×10−21

E E0

dn
dE

(E )l l

0

dn
dE

(E)l l

}

DE

Figure 3. As in Fig. 2, relating number density to numbers.
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dn
dE

l l

E2E1

Dn is the shaded

region under the curve

between E and E1 2

Figure 5. Relating rate-area to number.

joules.

Let’s examine Fig. 3 more closely. The area of the shaded rectangle
is just dn/dE times ∆E: dn/dE is the height, ∆E the width. Except for
the deviations at the top of the rectangle, this is almost the area under
the curve in the interval ∆E. (see Fig. 4)

The smaller ∆E is, the closer this is to the area under the curve.
In the limit where ∆E goes to the infinitesimal dE, we can see that the
number of particles in the interval between E1 and E2 is ∆n. (see Fig. 5)

∫ E2

E1

dn

dE
dE = ∆n.

Because of the reasons discussed above, we need to think from the point
of view of continuous distributions rather than discrete ones.

With this lengthy prologue, examine the distribution illustrated in
Fig. 6, where the number of particles per unit energy interval is zero for
all energies except between E1 and E2, where it is a constant C. Consider
the shaded rectangular energy region of width ∆E = Eb − Ea.

E

dn
dE

l l

}

DE

DE = E - Eb a

E2E1

C

Ea Eb

Figure 6. Number distribution for Problem B.
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a. How many particles can be expected to have their energy between Ea

and Eb?

b. If the total number of particles in the system is N , what is the value
of C?

c. What is the total number of particles with their energy between Eb

and infinity? (Express your answer in terms of N .)

d. Is this system in thermal equilibrium? Explain.

C.

a. Refer to the figure in Problem 4 of the Problem Supplement (dn/dE
for a gas satisfying the Maxwell-Boltzmann distribution law). What
is the total number of molecules in the gas? Give a qualitative answer
here.

b. Again referring to the same figure, what is the expression (in integral
form) that gives you the number of particles with energy greater than
E2? Compare the result of this integration at the two temperatures
300K and 500K.

D. The Boltzmann distribution is given by:

dn

dE
= CE1/2e−βE , β =

1

kT
,

where C and β are independent of energy. At very low E, the E1/2 makes
this function go to zero, while at high E the exponential forces it to zero,
so there is a maximum somewhere between.

a. For what value of E does this maximum occur? The average value of
some measurable quantity A is given by:

Aave =
A1 +A2 + . . .+AN

N
,

where each Ai is one of the measured values and there are N of them.
This can also be written:

Aave =
n1A1 + n2A2 + . . .+ npAp

N
,

12
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where ni is the number of times Ai is measured. If, as in the case
of the energy of the particles in a gas, there is a continuous range of
possible values of A, the discrete sum must go over to the integral:

Aave =
1

N

∫

A
dn

dA
dA.

Note that the factor on the right, (dn/dA) dA, is the number of parti-
cles that have their A value between A and A+ dA.

Thus the average energy of a system of particles is given by:

Eave =
1

N

∫

∞

0

E
dn

dE
dE.

Eave =

∫

∞

0
E
dn

dE
dE

∫

∞

0

dn

dE
dE

,

the denominator being just N , the total number.

b. For the distribution given in Exercise B, what is the average energy?

c. For the Boltzmann distribution,

dn

dE
= CE1/2e−βE , β =

1

kT
,

find the value of C by using the condition that the total number of
particles is N . You’ll need to refer to a table of integrals. If you don’t
have one, use:

∫

∞

0

xn−1e−x dx = Γ(n),

where:
Γ(n+ 1) = nΓ(n) and Γ(1/2) =

√
π.

d. Evaluate the average energy for a system of particles that have their
energies distributed cording to the Boltzmann distribution.

5. Answers to Exercises

A.

a. U = 16.6× 10−3 joules, Eave = 3.26× 10−21 joules.

13
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b. 8.5× 10−6 moles

c. No. When the thermal equilibrium is established, the distribution of
energy among the molecules is given by the Boltzmann distribution,
which is the most probable partition of the many possible partitions.

d. No. Temperature is defined for systems in thermal equilibrium. How-
ever, in more advanced treatments of thermodynamics, systems not in
thermal equilibrium may have temperatures defined for them. In fact,
our above system by that definition then has a negative temperature!

e. This system, with Eave = 3.26×10−21 joules, would have temperature
T = 157K if thermal equilibrium were established while Eave remained
unchanged. The energy partition would be given by the Boltzmann
distribution whose T = 157K and which has N = 5.1 × 1018 total
number of particles.

B.

a. C ∆E.

b. C =
N

E2 − E1

.

c. n(E > Eb) = N
E2 − Eb

E2 − E1

.

d. No, for the same reason as in part (c) of Exercise A.

C.

a. The total area under the curve.

b.
∫

∞

E2

dn

dE
dE. At 500K there are more particles with E > E2.

D.

a. The most probable E = KT/2, the point on the curve where the
maximum occurs.

b. (E2 + E1)/2.

c. N =
∫

∞

0

dn

dE
dE = C

∫

∞

0
E1/2e−βE dE,

14
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Hence: N =
C

β3/2

∫

∞

0
(βE)1/2e−βE d(βE).

Let βE ≡ x so: N =
C

β3/2

∫

∞

0
x1/2e−x dx.

From the integral tables this is: Γ(3/2).

But Γ(3/2) = (1/2)Γ(1/2) and Γ(1/2) =
√
π.

So, N =
C

2β3/2

√
π.

Hence, C = 2πN

(

β

π

)3/2

=
2πN

(πkT )3/2
.

d. Note that the last line below is “as stated” in MISN-0-157:

Eave =
1

N

∫

∞

0

E
dn

dE
dE =

C

N

∫

∞

0

E E1/2e−βE dE

=
C

N

∫

∞

0

E3/2e−βE dE =
C

Nβ5/2

∫

∞

0

(βE)3/2e−βE d(βE)

=
C

Nβ5/2

∫

∞

0

x3/2e−x d(x) =
C

Nβ5/2
Γ(5/2)

=
C

Nβ5/2

3

2

1

2
Γ(1/2) =

2πN

(πkT )3/2
1

N
(kT )5/2

3

2

1

2

√
π

=
3

2
k T .
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 159.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

1. In a dilute gas containing very many molecules, such that there is a
continuous distribution of energies among the molecules, the Maxwell-
Boltzmann distribution law is satisfied:

dn

dE
=

2πN

(πkT )3/2
E1/2 e−E/kT .

Identify the terms in this relation, explain what it tells you and plot a
rough sketch of this function, labeling axes. [K] What is the partition
of this system? [I] How is (dn/dE) related to N? [A]

2. Consider the following fictitious system. There are 1020 particles in
the system. Some 3×1019 of these particles have an energy of 0.06 eV,
3×1019 of them have an energy of 0.03 eV, while 4×1019 of them have
an energy of 0.04 eV.

a. What is the partition of this system? [E]

b. What is the total internal energy of this system in eV? [B] In joules?
[L]

c. What is the average energy of the particles of this system? [G]

3. How does the partition of the above system differ from the partition
of a real dilute gas of 1020 particles? [C]

4.

E

dn

dE

l l

E2E1

Above is shown the plot of the distribution function (number of
molecules per unit energy interval plotted versus the energy) for a
gas at a temperature T .

a. What is the total number of particles which at any instant have an
energy between E1 and E2 (Express your answer graphically)? [J]

18
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b. Again in terms of the graph, what is the total number of particles
in this gas? [F]

5. Starting from the Maxwell-Boltzmann distribution law, calculate the
average energy of a molecule of an ideal gas. [H]

6. Starting from the Maxwell-Boltzmann distribution law, calculate the
RMS value of the energy of a molecule of an ideal gas. [Find first the
average value of E2.) [D]

Brief Answers:

A. N =
∫

∞

0

dn

dE
dE.

B. U = 4.3× 1018 eV.

C. This is only one partition, one with extremely low probability. The
most probable partition is the Boltzmann distribution for this total
number of particles, with this Eave.

D. ERMS =
1

2

√
15 kT .

E. The partition is the set of 3 numbers n1, n2, n3.

F. The total area under the curve.

G. Eave = 4.3× 10−2 eV= 6.9× 10−21 joules.

H. See Exercise D, part (d). Eave = (3/2) kT.

I. (dn/dE) dE is the number of particles with energy between E and
E + dE.

The set of all these numbers for all E is the partition. The partition
is essential to the distribution function.

J. The area under the curve between E1 and E2.

K. See the discussion in this Unit.

L. 0.69 joules.

19 20


