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Input Skills:

1. Write down the equation governing voltage-driven 3-element LRC
circuits (MISN-0-152).

2. Show that q(t) = Ae−Rt/(2L) sin(ω0t+ α) with ω0 ≡ 1/
√
LC and

any A and α solves the undriven case: 0 = C−1q + RI + Lİ
(MISN-0-29).

Output Skills (Knowledge):

K1. Show that q(t) = qt(t) + qs(t) is a solution for the sinusoidally-
driven series LRC circuit, where qt(t) = Ae−γt sin(ω1t + α) and
qs(t) = B(ω) sin [ωt+ β(ω)] and the driving voltage is: V0 cos(ωt).
Show that qt(t) is a transient solution and qs is a steady-state
solution.

K2. Given a series LRC circuit driven by a sinusoidally-varying po-
tential, V0 cos(ωt), and given the steady-state solution, qs(t) =
B(ω) sin[ωt+β(ω)], show or describe how one shows that: β(ω) =
tan−1[(ω2

0 − ω2)L/(ωR)] and B(ω) = (V0 cosβ)/(Rω) or equiva-
lent.

K3. Sketch phasor diagrams, and interpret them, to illustrate the
phase relationships between voltages in the sinusoidally-driven se-
ries LRC circuit.

K4. Show or describe how one shows that the time-average steady-state
power transferred into a circuit by a sinusoidally-varying potential
is: Pave(ω) = (V

2
0 Rω

2/2)[L2(ω2
0 − ω2)2 +R2ω2]−1.

K5. Sketch Pave vs. ω in the vicinity of the resonant frequency of a
sinusoidally-driven series LRC circuit both for a broad resonance
and for a narrow one. Label each curve as to relative size of the
resistance.
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CIRCUIT RESONANCES

by

Peter Signell

1. Introduction

The concept of “resonance” is one of the most important in all of
science and technology. There are many mechanical processes where res-
onance is essential, other mechanical processes where it is to be avoided
at all cost. Included in the former category are the parts of instruments
which produce music; in the latter, the recording and playback apparatus.
In the former, the vocal cords of a person speaking or a bird singing; in
the latter, most parts of the ear of a person or a bird listening.

The same is true in electrical circuits: resonances can be useful for
producing waves of a particular frequency as in television, radio, mi-
crowaves, radar, etc. It can also be unwanted, ocurring when some com-
ponent fails, producing a huge current and perhaps a disastrous melt-
down.

2. Transient and Steady-State

2a. Combining R, L, C, and the Driving Potential. We com-
bine the potential drops across an inductor, a resistor, and a capacitor
connected in series across a sinusoidally-varying driving voltage, shown
pictorially in Fig. 1 and mathematically here:

V0 cosωt = C−1q +RI + LdI/dt .

Indicating time derivatives by primes, we can rewrite this as:

Lq′′ +Rq′ + C−1q = V0 cosωt , (1)

This is a second order equation so the solution must satisfy Eq. (1) and

must have two independent adjustable constants.

2b. Transient and Steady-State Parts. The solution to Eq. (1)
must have two independent adjustable constants, yet we know intuitively
that as time goes by the solution must settle down to a “steady-state”
form dictated entirely by the driving potential [the right side in Eq. (1),
VDR in Fig. 1]. There can be a “transient” form at earlier times but its
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VDR

L

R

switch

C
Figure 1. Switch is open for
t < 0, switch is closed for t > 0.
Here VDR is an oscillating driving
potential.

energy must gradually dissipate in the circuit resistance as time goes on,
leaving only the steady-state form. Only the transient form can contain
the two adjustable constants, since the long-term solution must depend
only on V0, ω, L, R, and C. We then write the solution for the charge on
the capacitor as:

q(t) = qt(t) + qs(t) , (2)

where, as it turns out, the “transient” part, qt, is

qt(t) = Ae−γt sin(ω1t+ α) , (3)

and the “steady-state” part, qs, is:

qs(t) = B(ω) sin [ωt+ β(ω)] , (4)

where we have used these abbreviations: γ ≡ R/(2L), ω1 ≡
√

ω2
0 − γ2,

and ω0 ≡ 1/
√
LC.

2c. Examination of the Two Solutions. As one can see by inspec-
tion, the transient part, Eq. (3), dies away as time passes. The steady-
state part, Eq. (3), just keeps on going without alteration. Any amount of
the transient part can be present because A and α are set by one’s values
for charge and current at time zero and these are presumably under your
control. You can even make the transient part zero by proper choice of
the charge and current at time zero. As for the steady-state part, its
amplitude B and phase β are independent of initial conditions and are
simply functions of the driving voltage V0 and the circuit parameters L,
C, and R.

2d. How the Solutions Were Obtained. The solutions, Eqs. (3) and
(4), were obtained by first separating Eq. (1) so as to show the “transient”
and “steady-state” parts explicitly:

(Lq′′t +Rq′t + C−1qt) +
(

Lq′′s +Rq′s + C−1qs − V0 cosωt
)

= 0 . (5)
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The transient part of Eq. (5) is:

(Lq′′t +Rq′t + C−1qt) = 0 . (6)

and the steady-state part is:

Lq′′s +Rq′s + C−1qs − V0 cosωt = 0 . (7)

These two quations are solved separately.

¤ Add the left sides of Eqs. (6) and (7) and see that they give the left
side of (5), just as promised in Eq. (2). Do the same for the right sides.

It can be easily demonstrated that the transient equation, Eq. (6),
has the solution shown in Eq. (3),1 where A and α must be determined
from q(0) and I(0).

3. Solving the Steady-State Equation

3a. Algebraic Method. We now substitute qs(t) = B sin(ωt+β) into
Eq. (7) and get:

(C−1 − ω2L)B sin(ωt+ β) +RωB cos(ωt+ β)− V0 cos(ωt) = 0. (8)

Now we use the identity

cos(A−B) = cosA cosB + sinA sinB ,

1See Appendix A of this module.

B q

x

y

b

I

w2B

wB

I

Figure 2. Charge and current phase relationships in Eq. (4)
at t = 0.
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which should be on instant recall, with A = ωt+ β and B = β, to get:

cosωt = (sinβ) sin(ωt+ β) + (cosβ) cos(ωt+ β) .

Put that into Eq. (8) and collect terms:

[(

C−1 − ω2L
)

B − V0 sinβ
]

sin(ωt+β)+(RωB−V0 cosβ) cos(ωt+β) = 0 .

Now the sine and cosine are independent functions of time, so each of
their constant coefficients must separately be zero in order to make the
sum of the terms stay zero at all times. Then:

(

C−1 − Lω2
)

B = V0 sinβ ,

RωB = V0 cosβ .
(9)

Dividing one of these two equations by the other gives tanβ, while sum-
ming the squares of the two equations gives B. Finally, we generally make
the substitution

ω0 ≡ 1/
√
LC ,

so the first of Eqs. (9) becomes:

(

ω2
0 − ω2

)

LB = V0 sinβ ,

3b. Phasor Method. First, since qs(t) = B sin(ωt+ β), we get:

VL = Lq′′s = −Lω2B sin(ωt+ β) ,

VC = C−1qs = C−1B sin(ωt+ β) ,

VR = Rq′s = RωB cos(ωt+ β) ,

so we can draw phasor diagrams at t = 0 for the charge/current relation-
ships and these are as shown in Figs. 2 and 3.2

Finally, in Fig. 2 we draw a phasor diagram for the voltages in the
circuit. Note that the vector sum of the voltage phasors for the
resistor, the inductor, and the capacitor, must equal the vector phasor
for the driving voltage. We take x- and y-components of these phasor
equations and find that we have just the two equations of Eq. (9).

2See Appendix B of this module.
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Figure 3. Voltage phase relationships in Eq. (4) at t = 0.

4. Average Power Dissipation

4a. Setting Up the Time-Average Integral. The time-average
steady-state power transferred into the circuit from the driving voltage
can be determined via the power-voltage-current relation:

P (t) = V (t)I(t) .

Then over one period P the average power is:

Pave =
1

P

∫ P

0

P (t) dt =
1

P

∫ P

0

VDR(t)I(t) dt ,

where the driving voltage is used because we are trying to obtain the
average power expended by that voltage source. Substituting VDR(t) and
I(t):

Pave =
1

P

∫ P

0

V0(cosωt)Bω cos(ωt+ β) dt .

Again use: cos(A+B) = cosA cosB − sinA sinB, now with A = ωt and
B = β:

Pave =
V0 ω

P

[

cosβ

∫ P

0

cos2 ωt dt− sinβ
∫ P

0

cosωt sinωt dt

]

. (10)
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integrand

sin2 tw

t

P
: area is

obviously zero

Figure 4. The integrand of the second integral in Eq. (10).

4b. Integrating. The second integral is zero, as can be easily seen by
writing it as:

∫ P

0

1

2
(sin 2ωt) dt ,

and simply looking at the integrand (see Fig. 4). The value of the first
integrand is P/2 because the average value of cos2 is 1/2.3 Then:

Pave =
V0Bω cosβ

2
.

4c. Eliminating the Phase Angle. We can evaluate cosβ from4

cosβ =
1

√

1 + tan2 β
=

1
√

1 +
L2(ω2

0 − ω2)2

R2ω2

=
Rω

√

R2ω2 + L2(ω2
0 − ω2)2

.

The final answer is then:

Pave =
V 2

0 ω2R

2 [L2(ω2
0 − ω2)2 +R2ω2]

.

5. Resonances

5a. Power Spectrums with Resonances. The “resonant” frequency
is ω0. If ω is swept through a range of frequencies, we get the power
spectrum shown in Fig. 5.

3See Appendix C, this module, Trick 1.
4See Appendix C, Trick 2, for a slightly different approach.
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Broad Resonance

(large R)
Narrow

Resonance

(small R)

w0

w w

P ( )ave w

w0

Figure 5. Power spectrums for broad and narrow reso-
nances.

5b. Resonance Width (Approximate). It is easy to derive a for-
mula for the width of the resonance in the “narrow width approximation.”
The width Γ of the resonance is defined at half the maximum resonance
height h as shown in Fig. 6. Then:

Pave(ω1/2) =
1

2
Pave(ω0) .

Substituting in both sides:

V 2
0 ω

2
1/2R

L2(ω2
0 − ω2

1/2)
2 +R2ω2

1/2

=
1

2
· V

2
0 ω

2
0R

R2ω2
0

,

which results in:
ω2

0 − ω2
1/2 = ±Rω1/2/L .

Factor the left hand side:

ω2
0 − ω2

1/2 = (ω0 − ω1/2) · (ω0 + ω1/2) ,

and use the narrow width approximation

ω0 ≈ ω1/2 ,

to get:
ω0 + ω1/2 ≈ 2ω0 ,

ω0 − ω1/2 = ±2R/2L ,

ω1/2 = ω0 ±R/2L .
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P ( )ave w

w0 w

h

h_
2

G

Figure 6. Power spectrum showing the definition of a res-
onance’s width Γ.

The full width at half maximum is then:

Γ = R/L .

This shows that the width is directly proportional to the circuit resistance.
The average power put into the circuit by the driving voltage source is
often written:

Pave(ω) =
V 2

0 Γ/(8L)

(ω − ω0)2 + (Γ/2)2
,

but you should realize that this is only valid in the narrow-width ap-
proximation. An interesting relation between the height and width of the
resonance can be obtained by evaluating the height at ω0:

Pave(ω0) =
V 2

0

2ΓL
,

so the height varies inversely as the width.

5c. Resonances as Complex-Plane Poles. A broad resonance is
the shoulder of a far-away pole in the complex plane. As the circuit
resistance is decreased, the pole moves closer to the real axis. This causes
the shoulder to narrow and heighten. In fact, the width of the resonance
is the distance of the pole from the real axis. These matters are discussed
and illustrated elsewhere.5

5See “Resonances and Poles: Relationship Between the Real and Imaginary Worlds”
(MISN-0-49).
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A. The Transient Solution

(for those interested)

1. Let q = Ae−γt cos (ωt+ α), where γ is some unknown function of L,
R, and C.

2. Differentiate q to get:

I = −γAe−γt cos (ωt+ α)− ωAe−γt sin (ωt+ α) .

3. Differentiate I to get:

İ = −γI + ωAγe−γt sin (ωt+ α)− ω2Ae−γt cos (ωt+ α) .

4. Substitute these into the master equation and the equality reduces to:
γ = R/(2L), ω2 = ω2

0 − γ2, ω2
0 = 1/(LC).

B. Constructing Phasor Diagrams

(a review)

1. A phasor diagram such as the one in Fig. 2 is a way of seeing the phase
relationships between circuit quantities.

2. Each circuit voltage or current is represented by a vector that rotates
counterclockwise at angular velocity ω. One can think of all the vectors
on a single diagram as being locked together as they rotate.

3. The physical value of any of the represented quantities is the projec-
tion of that quantity’s phase vector on the real axis. A projection on
the y-axis has no physical meaning. Thus the diagram is not to be
confused with a real vector diagram: the “vectors” on it are imaginary
constructs.
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4. The length of a phasor is the maximum value the quantity will have
when watched over a complete cycle.

5. The angle between a phasor and the positive x-axis is the phase angle
of that quantity at that moment.

6. Notice that, in Fig. 1, the q is 90◦ ahead of the I, and I is 90◦ ahead of
İ. This means, for example, that the voltage on the capacitor peaks a
quarter cycle ahead of when the voltage on the resistor peaks, and that
is a quarter cycle ahead of when the voltage on the inductor peaks.

C. Some Tricks

(for those interested)

Trick 1. Here is an easy way to see that the value of sin2 or cos2 over
any number of complete half cycles is one-half. We make use of the fact
that the average values of sin2 and cos2, over any number of complete
half cycles, are obviously equal (see Fig. 7). Then:

∫ 2π

0

cos2 x dx =

∫ 2π

0

sin2x dx ,

which can be used to evaluate the average value of cos2 x:

(cos2 x)ave =

∫ 2π

0
cos2 x dx

2π
=
1

2
·
∫ 2π

0
cos2 x dx

2π
+
1

2
·
∫ 2π

0
sin2 x dx

2π

=

∫ 2π

0
(cos2 x+ sin2 x) dx

4π
=

∫ 2π

0
(1) dx

4π
=
2π

4π
=
1

2
.

cos2 sin2

Figure 7. Comparison of sin2 and cos2 for use in evaluating
the first integral in Eq. (10).
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b

b

a

Figure 8. A triangle for evaluating complex
trigonometric relations.

Trick 2. Rather than working out cosβ from tanβ as in Sect. 4c, physi-
cists often use a triangle. If tanβ = a/b than a and b can be drawn as
the legs of a right-angle triangle shown in Fig. 8. The hypotenuse is
obviously

√
a2 + b2 and so cosβ = b/

√
a2 + b2. In our case:

tanβ =
L(ω2

0 − ω2)

Rω
,

hence

cosβ = (Rω)/
√

R2ω2 + L2(ω2
0 − ω2)2 .
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MODEL EXAM

1. See Output Skills K1-K5 in this module’s ID Sheet. The actual exam
may contain any selection of these skills or all of them.

Brief Answers:

1. See this module’s text.
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