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Figure 1. Section of a conduc-
tor through which is passing a
current ~I.

EXAMINING THE CHARGE CARRIERS;

THE HALL EFFECT

by

Peter Signell

1. Introduction

1a. Why We Study the Hall Effect. The moving objects constitut-
ing an ordinary electrical current are said by physicists to be negatively
charged electrons, not positive charges as assumed in the electrical en-
gineering convention.1 These electrons’ drift velocity down a household
wire are said by physicists to be typically about 10 feet per hour. How
can 10 ft/hr really be true when a wall switch seems to activate a lamp
across the room instantly! Here we examine convincing evidence of the
negative sign of the charge carriers and the magnitude of their drift ve-
locity. Elsewhere we examine the speed of electrical power transmission.2

The Hall effect is also interesting for its applications: it is used to deter-
mine electronic properties of new materials and for routine measurements
of unknown magnetic fields.

1b. Mutually Perpendicular I, B, V . The term “Hall effect” refers
to a special voltage that appears when a transverse magnetic field is ap-
plied to an electrical current flowing in a material (see Fig. 1). This special
voltage, called the “Hall voltage,” is at right angles to both the current
and the magnetic field. This means that all three quantities involved,
current, field, and voltage, are at right angles to each other. In the con-
figuration shown in Fig. 1 the Hall voltage is measured along the y-axis,

1For further information see “Conductivity and Resistance” (MISN-0-118) and
“Force on a Current in a Magnetic Field” (MISN-0-123).

2For further information see “Signal Velocity in a Conductor” (MISN-0-150).
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with the voltmeter’s positive lead at point b, negative lead at point a.
Notice the orientations of the other two quantities.

1c. An ~E Field so a Lorentz Force. The existence of the y-axis
voltage in Fig. 1 means that there is a y-axis electric field, one which,
like all electric fields, exerts a y-axis force on charge carriers like those
in the current I. It is not surprising that such a force is exerted on the
charge carriers; it is just the ordinary Lorentz force that occurs whenever
there is a magnetic field at right angles to the velocity of the charge.
The importance of the effect is that the value and sign of the voltage
tell us much about the charge carriers if we know the magnetic field.
Then, the measurement having been made for a particular material in a
known magnetic field, that material’s Hall voltage is used industrially to
determine unknown magnetic fields.

2. Delineating the Conditions

2a. Measurement Layout. The Hall voltage is measured across a
piece of conducting material formed in the shape of a rectangular bar as
in Fig. 1. We induce the current ~I in the x-direction and apply a constant
magnetic field ~B in the z-direction.

2b. Force Independent of Charge Sign. If each charge carrier in
the current ~I has charge q, then the magnetic field Lorentz force on the
charge is:3 ~F = q~vD × ~B, where ~vDis the velocity of drift in the direction
of the current.

¤ Show that if the current consists of positive particles going to the
right (positive x-direction) in Fig. 1 then the force on them is downwards
(negative y-direction). Then make the other possible assumption that
the current to the right consists of negative particles going to the left and
show that such negative charge carriers for the same current would also
experience a downward magnetic field Lorentz force.

2c. Downward Drift Reaches Equilibrium. When the current of
Fig. 1 is initiated, the Lorentz Force causes a net downward migration
of the charge-carrier electrons. This downward migration produces an
increasing concentration of electrons in the lower part of the material,
leaving a correspondingly increasing concentration of positive lattice ions
in the upper part of the material. A carrier that is part-way down will thus

3See “Force on a Charge Particle in a Magnetic Field: The Lorentz Force” (MISN-
0-122).
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experience a net upward electrostatic field just due to the gradient in the
net charge concentration. Downward migration ceases when the number
of “lower” electrons becomes so large that the upward “concentration
gradient” force matches the downward Lorentz force.

3. The Equilibrium Equations

3a. Equilibrium E and v. The condition for equilibrium in downward
migration is that the net force on a carrier is zero. Writing the charge on
the carrier as q, the condition is:

Fy = 0 = q[Ey + (~vD × ~B)y].

Then each mobile charge moves in the x-direction in an electric field whose
y-component is:4

Ey = +vD B. (1)

¤ Show that Ey is in the upward direction for positively charged carri-
ers, downward for negatively charged carriers, and that this checks with
the electric field direction being away from positive charges and toward
negative charges.

3b. Equilibrium Voltage. The potential difference between points a
and b of Fig. 1 is measurable with a voltmeter, and is simply related to
Ey. Recall that the voltage of point b with respect to point a is the work
per unit charge which you would have to do in moving a charge from the
reference point a to point b. Then the Hall voltage is:

Vba = −

∫ b

a

~E · d~y = −

∫ b

a

(−Ey dy) = Ey

∫ b

a

dy = Ey ` (see Fig. 1),

where we have used the fact that Ey in Eq. (1) has no dependence on y,

hence is constant in the y-direction. Since ~E is independent of y we could
also have obtained Vba by:

4This analysis has assumed that all the charge carriers have the same sign. If they
don’t, then VD in (1) is an average (see Appendix).
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Vba =
Work(a→ b)

charge

=
Applied Force(a→ b)×Distance(a→ b)

charge

=
Applied Force(a→ b)

charge
×Distance(a→ b)

= Ey `

(2)

where we have used the fact that the positive downward applied force per
unit charge must exactly cancel the positive upward electric field Ey.

3c. Carrier Velocity. Combining Eqs. (1) and (2), we can eliminate
Ey in terms of measurable quantities:

vD =
Vba

B`
. (3)

Measurement of the Hall voltage thus gives us a direct measurement of
the drift velocity of the charge carriers.

3d. Carrier Density; the Hall Constant. We can also obtain the
sign of the charge and the density of the carriers by recalling that the
current is given by:

~I =
Q

L
~vD

where (Q/L) is the charge per unit length along the conductor. This
relation can also be written as:

~I = σv A~vD, (4)

where σv is the carrier charge per unit volume, and A is the cross sectional
area of the conductor. Combining Equations (3) and (4) and using A = `d
(see Fig. 1):

σv =
IB

Vbad
. (5)

The inverse of this quantity is called the “Hall constant” and is written
RH or CH .

3e. Actual Measurements. When one actually makes the measure-
ment on, say, a piece of copper which could have been used for ordinary
house wiring, the Hall voltage turns out to be negative. This means that
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the voltmeter will only give a positive reading if the leads are reversed so
that the (+) one is at point a. The inescapable conclusion is that these
carriers have negative charge. The numerical value obtained in Eq. (5)
turns out to be very close to the density of valence-electron-charge for
both of the common good conductors, silver and copper. That value, the
valence-electron charge per unit volume, can be obtained by dividing the
metal’s mass density by its mass per atom to get the number of atoms
per unit volume and then multiplying that value by the valence-electron
charge on each atom.5

Acknowledgments

Michael Harrison provided a helpful discussion of the Hall effect.
William Lane, Stephen Smith and their students, especially Jim Peterson,
provided much valuable feedback on earlier versions. Preparation of
this module was supported in part by the National Science Foundation,
Division of Science Education Development and Research, through Grant
#SED 74-20088 to Michigan State University.

A. Hall Constant for Two Carriers

(for those interested)

When a current consists of electrons (negative charge) and
oppositely-moving electron holes (positive charge) as in iron, magnesium
and semiconductors, the Hall constant is given by:6

RH =
p− nb2

|e|(p+ nb)2

where p and n are the number densities of positive and negative carriers,
respectively, |e| is the magnitude of the electronic charge, and b is the
“mobility ratio,” (τmmp)/(τpmn), where the τ ’s are the carriers’ mean-
free-times between collisions and the m’s are their (positive) masses. The
above formula for RH is said to be in the “drift velocity approximation.”

5See Currents, Fields, and Particles, F. Bitter, John Wiley and Sons, New York
(1957), Table 6.1, p.231, and The Hall Effect in Metals and Alloys, C. M. Hurd, Plenum
Press, New York (1972), Fig. 1.1 on page 7, and Table 7.6 on pages 278-9. For access,
see this module’s Local Guide.

6For further information see Introduction to Solid State Physics, C. Kittel, John
Wiley and Sons, New York (1986), p. 215. For access, see this module’s Local Guide.

9

MISN-0-149 6

As an example, RH is positive for iron, showing a dominance of holes over
electrons.
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 149.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

Note: Problem 3 also occurs in this module’s Model Exam.

1. A Hall probe uses the Hall Effect to measure magnetic field strength.
If the probe is copper, has a thickness of 0.1mm, an RH value of
RH = −5 × 10−11 m3/(A s), and can measure a potential of 0.1mV,
what current is needed to measure a field of 0.2Tesla? Would you want
to use copper for a Hall probe?

2. Using RH = −5 × 10−11 m3/(A s), what is the charge carrier drift
velocity for a 2.0A current in a copper conductor whose cross-sectional
area is (1
unitcm2)? Why does the result imply the charge carriers are negative?

3. In Hurd’s book, pages 278-9, the experimental values of RH for copper
cover the range:

−7.8× 10−11 m3/(A s) ≤ RH ≤ −4.9× 10−11 m3/(A s)

Calculate the drift velocity (in feet per hour) for a 5 amp current
in No. 18 copper wire (cross sectional area 2mm2). Note: m/s =
1.18× 104 ft/hr.

Brief Answers:

1. RH =
Vbad

IB

so: I =
Vbad

RB
=

(10−4 V)(10−4 m)

(−5× 10−11 m3/(A s))(2.0× 10−1 T)
= −103 A.

No: vastly too much current.

2. vD =
Vba

B`
=

RHIB/d

B`
=

RHI

`d

=
(−5× 10−11 m3/(A s))(2.0A)

(10−2 m)(10−2 m)
= −10−6 m/s.

Here vD is negative so it is opposite to the positive charge direction,
so these charges are negative.

12



MISN-0-149 PS-2

3. Combine the equations above to find vD in terms of RH , I and A.

Then: −2.3 ft/hr ≤ vD ≤ −1.4 ft/hr.
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MODEL EXAM

1.

b B

I
a

l

d

Starting from the Lorentz force, derive the Hall effect equations:

vD =
Vba

B`

σv =
IB

Vbad

2. See Output Skill K2 in this module’s ID Sheet.

3. In Hurd’s book, pages 278-9, the experimental values of RH for copper
cover the range:

−7.8× 10−11 m3/A s ≤ RH ≤ −4.9× 10−11 m3/A s

Calculate the drift velocity (in feet per hour) for a 5 amp current in
No. 18 copper wire (cross sectional area 2mm2). Note: m/s = 1.18 ×
104 ft/hr.

Brief Answers:

1. See this module’s text.

2. See this module’s text.

3. See this module’s Problem Supplement, problem 3.
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