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ELECTRIC FIELD AND

POTENTIAL OF CONTINUOUS

CHARGE DISTRIBUTIONS

by

J. S.Kovacs and P. Signell
Michigan State University

1. Introduction

If you can calculate the electric field at all points due to a given charge
distribution, you will be in a position to determine completely the motion
of any charged particle in the field of this distribution. Elsewhere the
techniques for finding the electric potential due to a given distribution are
developed.1 In this module the procedure will be developed for getting the
electric field directly from the given charge distribution as well.2

2. Suggested Procedure

Read sections 1.8 and 1.12 of Purcell.3

Note that ε0 ≡ 1/(4πke) and µ0 ≡ 4πkm.

Also read sections 2.3, 2.4, 2.5, and 2.6 which are appropriate for Output
Skill S2.

Review section 16.9 of AF,4 omitting nothing except Example 16.7, which
is discussed elsewhere.5

Study what is summarized in Table 16.2 on page 351, especially the
column on the right.

1See “Electrostatic Potential Due to a Continuous Charge Distribution” (MISN-0-
147).

2If the given charge distribution has associated with it some symmetry, then Gauss’s
Law provides a powerful technique for easily and directly getting the electric field due
to this charge distribution. The series of modules MISN-0-153, and MISN-0-132 to
MISN-0-135, deal with this.

3Electricity and Magnetism, E.M.Purcell (Berkeley Physics Course - Vol 2, Mc-
Graw - Hill, 1965). For access, see this module’s Local Guide.

4M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading (1970). For access,
see this module’s Local Guide.

5“Electric Dipoles” (MISN-0-120).
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Work problems 16.25 and 16.26.

Do these by starting with the solutions you got6 for the potential func-
tions associated with these charge distributions and finding the ~E field
by taking the gradient of V . The answers to the two AF problems are
given in this module’s Problem Supplement. Also work the problems in
the Problem Supplement.

3. Comments

We use the expression ~E = −~∇V throughout this subject. If you are
totally unfamiliar with the ~∇ operator, see Sect. 4. Below we present a
short review.

The ~∇ operator is called the “gradient operator” and used to be
written grad. Note that it is not written ∆.

The relationship ~E = −~∇V is a vector relationship and in Cartesian
coordinates:

~∇V ≡ ∂V

∂x
x̂+

∂V

∂y
ŷ +

∂V

∂z
ẑ,

so that

Ex = −∂V
∂x

, Ey = −∂V
∂y

, Ez = −
∂V

∂z
,

giving the three independent components of ~E needed to completely de-
termine the vector. The component of ~E in any direction s is:

Es = −∂V/∂s.

For example in the radial direction (radically outward from some origin
of coordinates):

Er = −
∂V

∂r
.

For spherically symmetric charge distributions V depends only on r so
the partial derivative with respect to r becomes the full derivative with
respect to r and ~E has only an r-component:

~E(r) = Er r̂ = −
dV

dr
r̂,

where r̂ is a unit vector pointing radically outward from the center of the
spherically symmetric charge distribution.

6See MISN-0-147.
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4. The Gradiant Operator

If you haven’t been previously introduced to the gradient operation,
its appearance in the relation between ~E and V may seem mysterious.
The following may make it more plausible and acceptable.

Recall that with ~E given as a vector function of position in space,
the force on a charge Q at any point is given by ~F = Q ~E and the work
done by this force is:

W =

∫ B

A

~F · d~r,

along some path connecting points A and B. Because ~F = Q ~E is a
conservative force, this work is independent of the path connecting these
two points and the integral is just the potential energy difference between
the two points:

W = Q

∫ B

A

~E · d~r = Ep(A)− Ep(B) = −∆Ep,

where ∆Ep ≡ Ep(B)−Ep(A) is the change that occurs in Ep(r) in going
from A to B. (This may seem a trivial point, but it is an important
one. You can think of many everyday examples that conform to this
definition of the change in a quantity: When an airplane rises from the
ground (elevation 800 ft) to its cruising altitude at 32000 ft above sea level,
its change in elevation is its final elevation minus its initial elevation, or
+31,200 ft. When it returns to the ground it undergoes another change
in elevation, this time of -31,200 ft, again final elevation minus the initial
elevation.) So we have:

Q

∫ B

A

~E · d~r = Ep(A)− Ep(B)

∫ B

A

~E · d~r = Ep(A)

Q
− Ep(B)

Q
≡ V (A)− V (B)

∫ B

A

~E · d~r = −∆V = −[V (B)− V (A)].

From this expression the procedure for finding the functional form of V (~r),

given the functional form of ~E(~r) follows by direct integration along an
appropriate path.7 If the functional form of V (~r) is known, how do you

7See MISN-0-147.
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point A

point P

point B

ŝE(p)
`

q

Figure 1. Geometric quantities involved in developing the
idea of the gradient operator.

determine ~E(~r)? Again consider the left-hand side of the above equation
along a specific straight line path whose direction is specified by unit
vector ŝ as in Fig. 1.

Point P is some point on the path at which the electric field has the value
~E(P ). Here ~E makes an angle θ with the straight line path. Consider
points A and B, also on the line, and suppose A and B are a distance
∆S apart on the line. If ∆S is small enough, ~E does not vary much from
A to B so that we may replace ~E in the integral from A to B by its
value at point P , ~E(P ). (This assumes that ~E(P ) behaves smoothly in

the vicinity of P .) The component of ~E(P ) along the line is Es(P ). The
integral from A to B is:

∫ B

A

Es ds ≈ Es

∫ B

A

ds = Es∆S.

Then:

−∆V = −[V (B)− V (A)] =

∫ B

A

~E · d~r ≈ Es∆S,

for a path approaching an infintesimal straight line path. In the limit
that points A and B shrink to point P , this becomes exactly:

Es(P ) = −
dV

ds
.

This says that the component of the vector ~E along the direction s at
point P is the negative of the directional derivative at point P of the
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mass m

F
`

= -mgẑ

Y

Z

ẑ

ŷ

x̂

Figure 2. Quantities involved in describing gravitational
force near the surface of the earth.

scalar function V (~r). The directional derivative is just the limit indicated
above: limit as ∆S → 0 of ∆V/∆S where ∆V is V (B) − V (A). (With
V (~r) known at all points in the vicinity of P you can imagine that the
change in V is different as you move in different directions away from
point P . The directional derivative indicates the rate of change in any
specified direction. If dV/ds is zero along some direction, that direction
is along the equipotential line.)

So this gives you some information about ~E at point P : you have the
component of ~E along the direction s. If the direction s is the x-direction,
you have Ex, if s is next taken to be the y-direction, this gives you Ey,

and Ez can be obtained similarly. So ~E is determined:

~E(~r) = Ex(~r)x̂+ Ey(~r)ŷ + Ez(~r)ẑ

~E(~r) = −
(

∂V

∂x
x̂+

∂V

∂y
ŷ +

∂V

∂y
ŷ

)

.

~E(~r) = −~∇V (~r).

The partial derivatives are indicated above, because if the direction s
coincides with the x-direction the derivative along the x-direction is taken
with y and z held constant, etc; but such a prescription is precisely what
is meant by the term “partial derivative,” ∂/∂x. Consider as a simple and
familiar example, the gravitational force near the surface of the Earth, as
illustrated in Fig. 2.
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Figure 3. A gravitational equipotential surface near the
surface of the earth.

The x-y plane is parallel to the surface of the Earth near the surface
(very close to the surface of the Earth you may consider it a plane). The
potential energy function for a mass near the surface of the Earth is:

Ep(x, y, z) = mgz + C,

where C is an arbitrary constant. The equipotential surfaces are planes,
parallel to the x-y plane, on which z has a constant value (see Fig. 3).

(You can, in analogy to the electric potential, define a gravitational
potential which is the potential energy per unit mass. Instead, let us
continue to use the familiar potential energy.)

The force ~F on the mass m is given by:

~F = −~∇Ep(x, y, z)

~F = −
(

∂Ep

∂x
x̂+

∂Ep

∂y
ŷ +

∂Ep

∂z
ẑ

)

Because Ep depends only on z, the directional derivatives in the x and y
directions are zero (if you start at a point and move in those directions,
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Ep doesn’t change). For the z direction,

~F = −∂E
∂z

ẑ = −mgẑ

as expected.

5. Brief Answers to Assigned Problems

16.25
AF answer is OK.

16.26
Start from the result you got for the potential due to the disk of charge
(answer is given in MISN-0-147) to get the electric field. The electric field
at x is (using the method of Problem 16.25):

~E =
x̂Q

2πε0R2

[

− x√
R2 + x2

+ 1

]

.

Again, expanding
√

1 +R2/x2 for small R2/x2, this reduces to the field
due to a point charge.

Acknowledgments
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 148.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

ε0 ≡ 1/(4πke) and µ0 ≡ 4πkm

1. Elsewhere8 the electric field was given and the reader was asked to cal-
culate the potential energy and potential as a function of the distance
R from the axis of a cylindrical filament of charge. The answer was:

Ep(R) = −
λQ

2πε0
`nR+ C,

and

V (R) = − λ

2πε0
`nR+ C ′.

Starting from this result for the potential, find the electric field as a
function of the distance R from the axis of the filament.

2. Inside a sphere of radius R which has total charge Q distributed uni-
formly throughout its volume, the electric potential at a distance r
from the center of a sphere (r < R) is given by:

V (r) = − Qr2

8πε0R3
+ C.

Determine the electric field inside this sphere. Do it two ways:

(i) first, by observing that V depends only on r so its gradient is only
in the r direction; and

(ii) second, by writing r2 = x2 + y2 + z2 and using the Cartesian
coordinate form of the gradient.

8“Electrostatic Potential Due to a Continuous Charge Distribution” (MISN-0-147),
page 6.
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3.

ŝ

dS

P

O

R

S

R
^

For the uniformly charged filament of Problem 1, find the electric field
by direct integration. Here is guidance if you wish it. Consider the
point P a distance R from the axis of the uniformly charged filament (λ
coulombs per meter of length). Also consider an element of length, dS,
of the filament, which is a distance S from that point on the filament
(point O) which is closest to P .

a. Find the electric field at P due to the element of charge contained
in the element of length dS. (Note the directions of unit vectors R̂
and Ŝ).

b. Now consider the element of charge which is also a distance S away
from point O but in the opposite direction (in direction −Ŝ from
O). Calculate the contribution to the electric field from this element
of charge..

c. Find the resultant contribution to the field at P due to these two
symmetrically placed elements of charge.

d. Sum up the contributions from all such pairs of elements located
from zero to infinite distance from O. Note how symmetry has
aided you in finding the total field due to this filament. Compare
the method for getting this result with the method for Problem 1.
Your answer should of course be the same.

14
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4.

ŷ

dx

P

y0

x̂

y

x = L

Consider now a case where you don’t have the aid of symmetry you
had in Problem 3 above. Consider a filament of charge uniformly
distributed along the x-axis from the origin to x = L. The filament
has a total charge Q.

a. Find the charge per unit length.

b. Consider a point P on the y-axis (located at x = 0, y = y0). Find
the contribution to the electric field at P due to an element of charge
contained in element of length, dx, located at distance x from the
origin along the x-axis (x < L).

c. Sum up the contributions due to all elements of charge from the
origin to x = L, to find the total field at P .

d. Now take this result and let L→∞ (if you do this correctly, the an-
swer does not get infinite!). Using this result, write down the result
for the field at P due to a filament that extends from 0 to x = −∞.
Then add up the two contributions from two semi-infinite charge
filaments to get a result identical to what you got in Problem 3.

15
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Brief Answers:

1. Answer is in MISN-0-147.

2. Answer is in MISN-0-147 [question 2, part (a)].

3. a. dE(P ) =
λ ds

4πε0(R2 + S2)3/2

[

−SŜ +RR̂
]

.

b.
λ ds

4πε0(R2 + S2)3/2

[

SŜ +RR̂
]

.

c.
λRds

4πε0(R2 + S2)3/2
R̂.

d. E(p) = λR̂/(2πε0)R.

4. a. λ = Q/L.

b. d ~E(P ) =
λ ds

4πε0(x2 + y2
0
)3/2

[−xx̂+ y0ŷ].

c. ~E(P ) =
λx̂

4πε0

[

1
√

L2 + y2
0

− 1

y0

]

+
λŷ

4πε0

[

L

y0

√

L2 + y2
0

]

.

d. From a line of charge extending from 0 to L =∞:

~E(P,L→∞) = − λx̂

4πε0y0

+
λŷ

4πε0y0

.

From a line of charge extending from 0 to L = −∞:

~E(P,L→ −∞) =
λx̂

4πε0y0

+
λŷ

4πε0y0

.

From the sum of the above two lines of charge:

~E(P ) =
λŷ

2πε0y0

.
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills may be on the actual exam.

2. A uniformly distributed line of charge is placed along the x-axis from
x = 0 to x = a. There is a total charge Q distributed along this line.

a. Write down the expression for the electric field at point P along the
x-axis a distance x from the origin due to an infinitesimal segment
of charge contained in an infinitesimal segment of length ds at a
distance s from the origin. [C]

b. Summing up the contributions from all of the elements of charge,
find the expression for the electric field at P due to this line of
charge. [E]

c. The electric potential at P due to this line of charge is given by:

V (x) =
Q

4πε0a
`n

(

x

x− a

)

.

d. From this potential function (for points along the x-axis), find the
function that gives the electric field at points along the x-axis. [G]

2. a. Write down the function that gives the potential energy at a dis-
tance r from the origin when there is a point charge Q at the origin.
[B]

b. Evaluate the gradient of this potential function to determine the
electric field at distance r from the origin. [F]

3. For a parallel plate capacitor, the potential increases linearly from one
plate to the other if the distance between the plates is small compared
to the size of the plates. Assume this to be true for a capacitor where
the potential increases from V1 on plate #1 to V2 on plate #2, a
distance D away. Assume the plates lie in the x-z plane and they are
separated by a distance D. Use the gradient operator to determine the
electric field between the plates. [D]
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Brief Answers:

A. See Exercises, MISN-0-147.

B.
Q

4πε0r

C.
λ ds

4πε0(x− s)2
x̂.

D. ~E = −∂V
∂y

ŷ;
∂V

∂y
=slope of curve =

V2 − V1

D
,

so ~E = −V2 − V1

D
ŷ, points from plate 2 to plate 1.

E. ~E(x) =
λ

4πε0

[

1

x− a
− 1

x

]

x̂; (x > a).

F. ~∇V = −dV
dr

r̂ =
Q

4πε0r2
r̂.

G. ~∇V = −∂V
∂x

x̂, gives the same ~E as in answer (E) above.
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